实用医学杂志 ›› 2024, Vol. 40 ›› Issue (24): 3554-3560.doi: 10.3969/j.issn.1006-5725.2024.24.019
张建芳1,2,孙雪琴1,2,崔叶谦1,2,陈洋1,2,王绍波1()
收稿日期:
2024-08-26
出版日期:
2024-12-25
发布日期:
2024-12-23
通讯作者:
王绍波
E-mail:Wshbo_98@163.com
基金资助:
Jianfang ZHANG1,2,Xueqin SUN1,2,Yeqian CUI1,2,Yang CHEN1,2,Shaobo. WANG1()
Received:
2024-08-26
Online:
2024-12-25
Published:
2024-12-23
Contact:
Shaobo. WANG
E-mail:Wshbo_98@163.com
摘要:
胆管细胞癌(cholangiocarcinoma, CCA)是一种起源于胆管上皮细胞的恶性肿瘤,侵袭性高、预后较差。手术为首选治疗,但因多数患者确诊晚,手术效果不佳,通常需依赖化疗等综合治疗,然而中位生存期依然很短,迫切需要新策略。血管内皮生长因子(vascular endothelial growth factor, VEGF)作为血管生成的重要因素,常在CCA患者肿瘤细胞中高表达。近年研究表明,VEGF促进血管生成,加剧CCA的侵袭和转移。VEGF抑制剂作为治疗CCA的新兴手段,为实现精准医疗打开了新的窗口。采用VEGF抑制剂靶向治疗联合免疫治疗、化疗等方法可有效延长患者的生存期,为改善患者的生活质量带来了新的希望。本文综述了VEGF在CCA中的表达情况和肿瘤发展中的作用机制,以及VEGF抑制剂在CCA治疗中的应用进展。
中图分类号:
张建芳,孙雪琴,崔叶谦,陈洋,王绍波. 血管内皮生长因子抑制剂在胆管细胞癌治疗中的应用进展[J]. 实用医学杂志, 2024, 40(24): 3554-3560.
Jianfang ZHANG,Xueqin SUN,Yeqian CUI,Yang CHEN,Shaobo. WANG. Effects of VEGF inhibitors for treating cholangiocarcinoma: A review of literature[J]. The Journal of Practical Medicine, 2024, 40(24): 3554-3560.
表1
VEGF抑制剂的分类及应用"
药物分类 | 作用机制 | 代表药物 | 作用特点 | 不良反应 |
---|---|---|---|---|
单克隆抗体 | 特异性地结合并中和VEGF或同源受体,阻断其与受体的结合,从而减少肿瘤异常血管生成 | Bevacizumab | 能延长患者PFS,但不能延长OS | 单一疗法临床效果差,会出现难以避免的并发症(可能会抑制生理性血管的生成) |
Ramucirumab | 耐药性良好,能延长晚期以及难治性CCA患者的中位PFS | |||
酪氨酸激酶 抑制剂 | 抑制VEGF受体的TK活性来阻断VEGF信号传导,有效抑制血管生成,减少血管通透性,从而阻断肿 瘤细胞的增殖并促进其凋亡 | 阿帕替尼 | 阻断CCA中VEGF通路而影响肿瘤细胞的增殖、迁移和侵袭 | 伴随反应,如高血压、蛋白尿、出血、血胆红素升高、血栓等 |
舒尼替尼 | 缓解晚期CCA,还具有良好的耐受性和较小的不良反应 | |||
安罗替尼 | 新型多靶点抑制剂;抑制VEGF信号通路传导和磷酸化水平失活、阻滞细胞周期;3级或更高不良反应发生率显著降低(相较于舒尼替尼) | |||
索拉非尼 | 抑制多种信号通路,单独用于治疗晚期CCA患者效果不理想 | |||
RNAi疗法 | 特异性地降低或沉默VEGF基因的表达来抑制其生物学活性 | Macugen | 用于糖尿病性黄斑水肿 | 递送效率低、体内稳定性差;可能引起宿主的免疫反应;脱靶效应 |
Onpattro、Givlaari、Oxlumo、Leqvio和ALN-HSD | 作用于肝脏疾病的5种获批药物 |
1 |
RIZVI S, GORES G J. Pathogenesis, diagnosis, and management of cholangiocarcinoma [J]. Gastroenterology, 2013, 145(6): 1215-1229. doi:10.1053/j.gastro.2013.10.013
doi: 10.1053/j.gastro.2013.10.013 |
2 |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi:10.3322/caac.21834
doi: 10.3322/caac.21834 |
3 |
CLEMENTS O, ELIAHOO J, KIM J U, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis [J]. J Hepatol, 2020, 72(1): 95-103. doi:10.1016/j.jhep.2019.09.007
doi: 10.1016/j.jhep.2019.09.007 |
4 |
KHAN S A, TAVOLARI S, BRANDI G. Cholangiocarcinoma: Epidemiology and risk factors [J]. Liver International, 2019, 39(S1): 19-31. doi:10.1111/liv.14095
doi: 10.1111/liv.14095 |
5 |
SØREIDE K, DOPAZO C, BERREVOET F, et al. Biliary tract cancer [J]. Eur J Surg Oncol, 2024: 108489. doi:10.1016/j.ejso.2024.108489
doi: 10.1016/j.ejso.2024.108489 |
6 |
SPOLVERATO G, VITALE A, CUCCHETTI A, et al. Can hepatic resection provide a long-term cure for patients with intrahepatic cholangiocarcinoma? [J]. Cancer, 2015, 121(22): 3998-4006. doi:10.1002/cncr.29619
doi: 10.1002/cncr.29619 |
7 | RUZZENENTE A, CONCI S, VALDEGAMBERI A, et al. Role of surgery in the treatment of intrahepatic cholangiocarcinoma [J]. Eur Rev Med Pharmacol Sci, 2015, 19(15): 2892-900. |
8 |
AISHIMA S, ODA Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: Different characters of perihilar large duct type versus peripheral small duct type [J]. J Hepatobiliary Pancreat Sci, 2015, 22(2): 94-100. doi:10.1002/jhbp.154
doi: 10.1002/jhbp.154 |
9 |
UENISHI T, YAMAMOTO T, TAKEMURA S, et al. Surgical treatment for intrahepatic cholangiocarcinoma [J]. Clin J Gastroenterol, 2014, 7(2): 87-93. doi:10.1007/s12328-014-0460-z
doi: 10.1007/s12328-014-0460-z |
10 |
BANALES J M, CARDINALE V, MACIAS R I R, et al. Cholangiocarcinoma: State-of-the-art knowledge and challenges [J]. Liver Int, 2019, 39(): 5-6. doi:10.1111/liv.14101
doi: 10.1111/liv.14101 |
11 |
DIERKS J, GASPERSZ M P, BELKOUZ A, et al. Translating the ABC-02 trial into daily practice: Outcome of palliative treatment in patients with unresectable biliary tract cancer treated with gemcitabine and cisplatin [J]. Acta Oncol, 2018, 57(6): 807-812. doi:10.1080/0284186x.2017.1418532
doi: 10.1080/0284186x.2017.1418532 |
12 |
ZHANG Y, YAN H J, WU J. The Tumor Immune Microenvironment plays a Key Role in Driving the Progression of CholangioCarcinoma [J]. Current Cancer Drug Targets, 2024, 24(7): 681-700. doi:10.2174/0115680096267791231115101107
doi: 10.2174/0115680096267791231115101107 |
13 | 李斌, 纪元. 中国抗癌协会胆道恶性肿瘤靶向及免疫治疗指南(2022)(简要版) [J]. 中国实用外科杂志, 2023, 43(5): 481-491. |
14 |
NTANASIS-STATHOPOULOS I, TSILIMIGRAS D I, GAVRIATOPOULOU M, et al. Cholangiocarcinoma: Investigations into pathway-targeted therapies [J]. Expert Rev Anticancer Ther, 2020, 20(9): 765-773. doi:10.1080/14737140.2020.1807333
doi: 10.1080/14737140.2020.1807333 |
15 |
JIANG Z, ZHOU J, LI L, et al. Pericytes in the tumor microenvironment [J]. Cancer Lett, 2023, 556: 216074. doi:10.1016/j.canlet.2023.216074
doi: 10.1016/j.canlet.2023.216074 |
16 |
SIVEEN K S, PRABHU K, KRISHNANKUTTY R, et al. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges [J]. Curr Vasc Pharmacol, 2017, 15(4): 339-351. doi:10.2174/1570161115666170105124038
doi: 10.2174/1570161115666170105124038 |
17 |
SHAW P, DWIVEDI S K D, BHATTACHARYA R, et al. VEGF signaling: Role in angiogenesis and beyond [J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189079. doi:10.1016/j.bbcan.2024.189079
doi: 10.1016/j.bbcan.2024.189079 |
18 |
CAI C, WANG X, FU Q, et al. The VEGF expression associated with prognosis in patients with intrahepatic cholangiocarcinoma: A systematic review and meta-analysis [J]. World J Surg Oncol, 2022, 20(1): 40. doi:10.1186/s12957-022-02511-7
doi: 10.1186/s12957-022-02511-7 |
19 |
BOKHARI S M Z, HAMAR P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors [J]. Int J Mol Sci, 2023, 24(17): 13317. doi:10.3390/ijms241713317
doi: 10.3390/ijms241713317 |
20 |
WHITE A L, BIX G J. VEGFA Isoforms as Pro-Angiogenic Therapeutics for Cerebrovascular Diseases [J]. Biomolecules, 2023, 13(4): 702. doi:10.3390/biom13040702
doi: 10.3390/biom13040702 |
21 |
LEE C, CHEN R, SUN G, et al. VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway [J]. Signal Transduct Target Ther, 2023, 8(1): 305. doi:10.1038/s41392-023-01539-9
doi: 10.1038/s41392-023-01539-9 |
22 |
CADAMURO M, BRIVIO S, MERTENS J, et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma [J]. J Hepatol, 2019, 70(4): 700-709. doi:10.1016/j.jhep.2018.12.004
doi: 10.1016/j.jhep.2018.12.004 |
23 | TANG D, NAGANO H, YAMAMOTO H, et al. Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopathological significance [J]. Oncol Rep, 2006, 15(3): 525-532. |
24 |
CALASTRI M C J, FERREIRA R F, TENANI G D, et al. Investigating VEGF. miR-145-3p, and miR-101-3p Expression in Patients with Cholangiocarcinoma [J]. Asian Pac J Cancer Prev, 2022, 23(7): 2233-2341. doi:10.31557/apjcp.2022.23.7.2233
doi: 10.31557/apjcp.2022.23.7.2233 |
25 |
MAO J, TAN L, TIAN C, et al. Research progress on rodent models and its mechanisms of liver injury [J]. Life Sci, 2024, 337: 122343. doi:10.1016/j.lfs.2023.122343
doi: 10.1016/j.lfs.2023.122343 |
26 |
ABHINAND C S, RAJU R, SOUMYA S J, et al. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis [J]. J Cell Commun Signal, 2016, 10(4): 347-354. doi:10.1007/s12079-016-0352-8
doi: 10.1007/s12079-016-0352-8 |
27 |
RIMINI M, CASADEI-GARDINI A. Angiogenesis in biliary tract cancer: targeting and therapeutic potential [J]. Expert Opin Investig Drugs, 2021, 30(4): 411-418. doi:10.1080/13543784.2021.1881479
doi: 10.1080/13543784.2021.1881479 |
28 |
MARIOTTI V, FIOROTTO R, CADAMURO M, et al. New insights on the role of vascular endothelial growth factor in biliary pathophysiology [J]. JHEP Rep, 2021, 3(3): 100251. doi:10.1016/j.jhepr.2021.100251
doi: 10.1016/j.jhepr.2021.100251 |
29 | 成芳芳, 陈庆会, 李嫣, 等. VEGF基因多态性与手足口病脑炎易患性关系研究 [J]. 国际儿科学杂志, 2020, 47(10): 746-748. |
30 | 车雅丹, 李丽霞. 小分子抗血管生成药物在晚期乳腺癌中的研究进展 [J]. 实用医学杂志, 2023, 39(22): 2866-2871. |
31 |
PEREZ-GUTIERREZ L, FERRARA N. Biology and therapeutic targeting of vascular endothelial growth factor A [J]. Nat Rev Mol Cell Biol, 2023, 24(11): 816-834. doi:10.1038/s41580-023-00631-w
doi: 10.1038/s41580-023-00631-w |
32 |
LIU Z L, CHEN H H, ZHENG L L, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer [J]. Signal Transduct Target Ther, 2023, 8(1): 198. doi:10.1038/s41392-023-01460-1
doi: 10.1038/s41392-023-01460-1 |
33 |
PARMAR D, APTE M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis [J]. Eur J Pharmacol, 2021, 899: 174021. doi:10.1016/j.ejphar.2021.174021
doi: 10.1016/j.ejphar.2021.174021 |
34 |
APTE R S, CHEN D S, FERRARA N. VEGF in Signaling and Disease: Beyond Discovery and Development [J]. Cell, 2019, 176(6): 1248-1264. doi:10.1016/j.cell.2019.01.021
doi: 10.1016/j.cell.2019.01.021 |
35 |
HSU J Y, WAKELEE H A. Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy [J]. BioDrugs, 2009, 23(5): 289-304. doi:10.2165/11317600-000000000-00000
doi: 10.2165/11317600-000000000-00000 |
36 |
MAURIZ J L, GONZALEZ-GALLEGO J. Antiangiogenic drugs: current knowledge and new approaches to cancer therapy [J]. J Pharm Sci, 2008, 97(10): 4129-4154. doi:10.1002/jps.21286
doi: 10.1002/jps.21286 |
37 |
GIGANTE E, BOUATTOUR M, BEDOYA J U, et al. Atezolizumab and bevacizumab for non-resectable or metastatic combined hepatocellular-cholangiocarcinoma: A multicentric retrospective study [J]. United European Gastroenterol J, 2024, 12(4): 429-439. doi:10.1002/ueg2.12503
doi: 10.1002/ueg2.12503 |
38 |
GARCIA J, HURWITZ H I, SANDLER A B, et al. Bevacizumab (Avastin(R)) in cancer treatment: A review of 15 years of clinical experience and future outlook [J]. Cancer Treat Rev, 2020, 86: 102017. doi:10.1016/j.ctrv.2020.102017
doi: 10.1016/j.ctrv.2020.102017 |
39 |
LEE S, SHROFF R T, MAKAWITA S, et al. Phase II Study of Ramucirumab in Advanced Biliary Tract Cancer Previously Treated By Gemcitabine-Based Chemotherapy [J]. Clin Cancer Res, 2022, 28(11): 2229-2236. doi:10.1158/1078-0432.ccr-21-3548
doi: 10.1158/1078-0432.ccr-21-3548 |
40 |
WANG Y, CHEN T, LI K, et al. Recent Advances in the Mechanism Research and Clinical Treatment of Anti-Angiogenesis in Biliary Tract Cancer [J]. Front Oncol, 2021, 11: 777617. doi:10.3389/fonc.2021.777617
doi: 10.3389/fonc.2021.777617 |
41 |
LIU Y, LI Y, WANG Y, et al. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy [J]. J Hematol Oncol, 2022, 15(1): 89. doi:10.1186/s13045-022-01310-7
doi: 10.1186/s13045-022-01310-7 |
42 |
HSU J Y, WAKELEE H A. Monoclonal antibodies targeting vascular endothelial growth factor: Current status and future challenges in cancer therapy [J]. BioDrugs, 2009, 23(5):289-304. doi:10.2165/11317600-000000000-00000
doi: 10.2165/11317600-000000000-00000 |
43 |
ABDELGALIL A A, ALKAHTANI H M, AL-JENOOBI F I. Sorafenib [J]. Profiles Drug Subst Excip Relat Methodol, 2019, 44: 239-266. doi:10.1016/bs.podrm.2018.11.003
doi: 10.1016/bs.podrm.2018.11.003 |
44 |
GRIMALDI A M, GUIDA T, D'ATTINO R, et al. Sunitinib: bridging present and future cancer treatment [J]. Ann Oncol, 2007, 18 : vi31-4. doi:10.1093/annonc/mdm221
doi: 10.1093/annonc/mdm221 |
45 |
HUANG M, HUANG B, LI G, et al. Apatinib affect VEGF-mediated cell proliferation, migration, invasion via blocking VEGFR2/RAF/MEK/ERK and PI3K/AKT pathways in cholangiocarcinoma cell [J]. BMC Gastroenterol, 2018, 18(1): 169. doi:10.1186/s12876-018-0870-3
doi: 10.1186/s12876-018-0870-3 |
46 |
LI H, KUANG X, LIANG L, et al. The Beneficial Role of Sunitinib in Tumor Immune Surveillance by Regulating Tumor PD-L1 [J]. Adv Sci (Weinh), 2021, 8(2): 2001596. doi:10.1002/advs.202001596
doi: 10.1002/advs.202001596 |
47 |
DREYER C, SABLIN M P, BOUATTOUR M, et al. Disease control with sunitinib in advanced intrahepatic cholangiocarcinoma resistant to gemcitabine-oxaliplatin chemotherapy [J]. World J Hepatol, 2015, 7(6): 910-915. doi:10.4254/wjh.v7.i6.910
doi: 10.4254/wjh.v7.i6.910 |
48 |
EL-KHOUEIRY A B, RANKIN C J, BEN-JOSEF E, et al. SWOG 0514: A phase Ⅱ study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma [J]. Invest New Drugs, 2012, 30(4): 1646-1651. doi:10.1007/s10637-011-9719-0
doi: 10.1007/s10637-011-9719-0 |
49 |
SONG F, HU B, CHENG J W, et al. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma [J]. Cell Death Dis, 2020, 11(7): 573. doi:10.1038/s41419-020-02749-7
doi: 10.1038/s41419-020-02749-7 |
50 |
SHEN G, ZHENG F, REN D, et al. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development [J]. J Hematol Oncol, 2018, 11(1): 120. doi:10.1186/s13045-018-0664-7
doi: 10.1186/s13045-018-0664-7 |
51 |
XU J, BAI Y, SUN H, et al. A single-arm, multicenter, open-label phase 2 trial of surufatinib in patients with unresectable or metastatic biliary tract cancer [J]. Cancer, 2021, 127(21): 3975-3984. doi:10.1002/cncr.33803
doi: 10.1002/cncr.33803 |
52 | 杨婷婷, 李鹏运, 郑志兵. VEGFR小分子抑制剂研究的新进展 [J]. 军事医学, 2021, 45(5): 390-396. |
53 |
ROSSI J J, ROSSI D J. siRNA Drugs: Here to Stay [J]. Mol Ther, 2021, 29(2): 431-432. doi:10.1016/j.ymthe.2021.01.015
doi: 10.1016/j.ymthe.2021.01.015 |
54 |
CORYDON I J, FABIAN-JESSING B K, JAKOBSEN T S, et al. 25 years of maturation: A systematic review of RNAi in the clinic [J]. Mol Ther Nucleic Acids, 2023, 33: 469-482. doi:10.1016/j.omtn.2023.07.018
doi: 10.1016/j.omtn.2023.07.018 |
55 |
ZHANG C, ZHAO Y, ZHANG E, et al. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy [J]. Drug Deliv, 2020, 27(1): 1397-1411. doi:10.1080/10717544.2020.1827085
doi: 10.1080/10717544.2020.1827085 |
56 |
LIU Y C, MA W H, GE Y L, et al. RNAi-mediated gene silencing of vascular endothelial growth factor C suppresses growth and induces apoptosis in mouse breast cancer in vitro and in vivo [J]. Oncol Lett, 2016, 12(5): 3896-3904. doi:10.3892/ol.2016.5158
doi: 10.3892/ol.2016.5158 |
57 |
KALATHINGAL M, RHEE Y M. Molecular mechanism of binding between a therapeutic RNA aptamer and its protein target VEGF: A molecular dynamics study [J]. J Comput Chem, 2023, 44(11): 1129-1137. doi:10.1002/jcc.27070
doi: 10.1002/jcc.27070 |
58 |
HOBEL S, KOBURGER I, JOHN M, et al. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab [J]. J Gene Med, 2010, 12(3): 287-300. doi:10.1002/jgm.1431
doi: 10.1002/jgm.1431 |
59 |
LU S, LI J. Treatment of cholangiocarcinoma by pGCsiRNA-vascular endothelial growth factor in vivo [J]. Asian Biomed (Res Rev News), 2024, 18(2): 61-68. doi:10.2478/abm-2024-0009
doi: 10.2478/abm-2024-0009 |
60 |
WANG Y, WEI Y, CHEN L, et al. Research progress of siVEGF complex and their application in antiangiogenic therapy [J]. Int J Pharm, 2023, 643: 123251. doi:10.1016/j.ijpharm.2023.123251
doi: 10.1016/j.ijpharm.2023.123251 |
61 |
LEONG A, KIM M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer [J]. Int J Mol Sci, 2020, 21(22):8689. doi:10.3390/ijms21228689
doi: 10.3390/ijms21228689 |
62 | 吴克林, 吴天英, 许海. 卡瑞利珠单抗联合化疗对老年非小细胞肺癌患者血清细胞角蛋白19片段抗原21-1、基质金属蛋白酶9表达及肿瘤生长转移的影响 [J]. 实用医学杂志, 2020, 36(20): 2830-2833. |
63 |
MA Z, LI H, LIU L. Combining PD-1 Inhibitor with VEGF/VEGFR2 Inhibitor in Chemotherapy: Report of a Patient with End-Stage Cholangiocarcinoma and Review of Literature [J]. Recent Pat Anticancer Drug Discov, 2021, 16(1): 101-107. doi:10.2174/1574892815999201231215311
doi: 10.2174/1574892815999201231215311 |
64 |
ZHOU M, JIN Y, ZHU S, et al. A phase II study to evaluate the safety and efficacy of anlotinib combined with toripalimab for advanced biliary tract cancer [J]. Clin Trans Immunol, 2024, 13(1):e1483. doi:10.1002/cti2.1483
doi: 10.1002/cti2.1483 |
65 |
SHI G M, HUANG X Y, WU D, et al. Toripalimab combined with lenvatinib and GEMOX is a promising regimen as first-line treatment for advanced intrahepatic cholangiocarcinoma: A single-center, single-arm, phase 2 study [J]. Signal Transduct Target Ther, 2023, 8(1): 106. doi:10.1038/s41392-023-01317-7
doi: 10.1038/s41392-023-01317-7 |
66 |
DONG Z, SUI C, LU J, et al. Chemotherapy combined with lenvatinib and PD-1 may be a potential better alternative option for advanced unresectable intrahepatic cholangiocarcinoma: A retrospective real-world study [J]. Front Immunol, 2024, 15: 1463574. doi:10.3389/fimmu.2024.1463574
doi: 10.3389/fimmu.2024.1463574 |
67 |
LIU J, CAO J, WANG G, et al. Abstract 944: Analysis of efficacy of receptor tyrosine kinase and immune checkpoint inhibitors and insights to potential combinatorial treatment strategies in cholangiocarcinomas [J]. Cancer Res, 2021, 81(): 944. doi:10.1158/1538-7445.am2021-944
doi: 10.1158/1538-7445.am2021-944 |
68 |
LUO J, ZHENG J, YAO H, et al. Radioactive (125)I Seed Inhibits Cell Migration and Invasion and Promotes Apoptosis by Inactivating the VEGFR2 Signaling Pathway in Cholangiocarcinoma [J]. Dose Response, 2023, 21(3): 15593258231187348. doi:10.1177/15593258231187348
doi: 10.1177/15593258231187348 |
69 |
VALLE J W, VOGEL A, DENLINGER C S, et al. Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: A randomised, double-blind, multicentre, phase 2 study [J]. Lancet Oncol, 2021, 22(10): 1468-1482. doi:10.1016/s1470-2045(21)00409-5
doi: 10.1016/s1470-2045(21)00409-5 |
70 |
ARKENAU H T, MARTIN-LIBERAL J, CALVO E, et al. Ramucirumab Plus Pembrolizumab in Patients with Previously Treated Advanced or Metastatic Biliary Tract Cancer: Nonrandomized, Open-Label, Phase I Trial (JVDF) [J]. Oncologist, 2018, 23(12): 1407-e136. doi:10.1634/theoncologist.2018-0044
doi: 10.1634/theoncologist.2018-0044 |
[1] | 蔡嘉怡,陈思羽,蔡女略,李文德. 微小RNA-378-5p对胶质瘤血管生成的影响[J]. 实用医学杂志, 2025, 41(2): 186-194. |
[2] | 付强,卢钟琦,常颖,金铁峰,张美花. 免疫检查点及抑制剂抗肿瘤作用的研究进展[J]. 实用医学杂志, 2025, 41(2): 288-293. |
[3] | 李春燕,肖婷,伍邦翠,陈永,田梅. 蛋白激酶Cβ抑制剂通过调节巨噬细胞表型对移植期间的肾缺血再灌注损伤的影响[J]. 实用医学杂志, 2025, 41(1): 23-29. |
[4] | 丁宇轩,郭沥泞,沈佳怡,王丽君. 放疗联合PD-1抑制剂及酪氨酸激酶抑制剂治疗MSS型结直肠癌肝转移疗效及安全性[J]. 实用医学杂志, 2024, 40(9): 1293-1297. |
[5] | 孟肖娜,孙旭,刘怀民. 免疫检查点抑制剂相关结肠炎的研究进展[J]. 实用医学杂志, 2024, 40(9): 1314-1319. |
[6] | 张晴,黎土娣,陈荣,曾智桓. SGLT2i预防经皮冠状动脉介入术后支架内再狭窄的研究进展[J]. 实用医学杂志, 2024, 40(8): 1175-1180. |
[7] | 徐军红,姚红兵,王雪尧,郭威,陆才进,吴嘉兴,蒋建晖,赵东康. FOLFOX-肝动脉灌注化疗联合应用仑伐替尼和程序性死亡受体1抑制剂治疗中晚期肝癌[J]. 实用医学杂志, 2024, 40(6): 762-767. |
[8] | 钟睿,王家宁,张蕾,郭凌郧,杨建业,郑飞,晏誉文,余丹丽,谭利国. 腺病毒介导的血管内皮生长因子联合干细胞生长因子治疗严重肢体缺血的实验研究[J]. 实用医学杂志, 2024, 40(5): 639-645. |
[9] | 谭毅刚,邝浩斌,傅红梅,李春燕,赵小冰,薛丽京. 自身免疫疾病应用肿瘤坏死因子-α抑制剂后并发结核病33例临床特征分析[J]. 实用医学杂志, 2024, 40(3): 378-383. |
[10] | 陈灿伟,廖壮文,范子文,黄帅,黄彦,陈斌伟. 溶酶体相关膜蛋白3通过VEGF/AKT通路抑制PC-3细胞增殖、转移及血管生成[J]. 实用医学杂志, 2024, 40(2): 182-187. |
[11] | 张雨峤,梅伟健. 免疫检查点抑制剂治疗实体瘤的标志性成果[J]. 实用医学杂志, 2024, 40(2): 272-277. |
[12] | 徐思诗,叶佩佩. BTK抑制剂治疗套细胞淋巴瘤的临床研究进展[J]. 实用医学杂志, 2024, 40(17): 2363-2368. |
[13] | 袁胜芳,王布,项保利,赵建清,沈晶晶,张志华. 外周血循环肿瘤DNA预测晚期非小细胞肺癌免疫治疗疗效及预后价值[J]. 实用医学杂志, 2024, 40(15): 2110-2115. |
[14] | 张卫丰,马海龙,张金玲. PCSK9抑制剂对ST段抬高型急性心肌梗死PCI后炎症水平和心室重构的影响[J]. 实用医学杂志, 2024, 40(15): 2142-2147. |
[15] | 黄山高,吴月玲,张颖. 瞄准未来:卵巢癌靶向治疗的新进展[J]. 实用医学杂志, 2024, 40(14): 1901-1907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||