实用医学杂志 ›› 2024, Vol. 40 ›› Issue (22): 3262-3267.doi: 10.3969/j.issn.1006-5725.2024.22.024
收稿日期:
2024-04-23
出版日期:
2024-11-25
发布日期:
2024-11-25
通讯作者:
邓燕
E-mail:CG20190910@163.com
基金资助:
Received:
2024-04-23
Online:
2024-11-25
Published:
2024-11-25
Contact:
Yan DENG
E-mail:CG20190910@163.com
摘要:
心血管疾病(CVD)是我国的一大公共卫生挑战,其发病率和病死率在逐年攀升。巨噬细胞代谢重编程在CVD中的影响日益受到重视,因为它直接关联到疾病的发病机制和潜在治疗策略。谷氨酰胺(GLN)作为巨噬细胞最主要的能量来源之一,其代谢改变直接影响了巨噬细胞的表型转换、功能执行以及在CVD中的适应性反应。该综述围绕巨噬细胞内的GLN代谢重编程对CVD发病机制的影响展开论述,探讨其在动脉粥样硬化、心肌梗死以及其他心血管病变中的作用,并评估调节GLN代谢路径作为治疗策略的潜力。
中图分类号:
陈幸,邓燕. 巨噬细胞的谷氨酰胺代谢重编程在心血管疾病中的作用[J]. 实用医学杂志, 2024, 40(22): 3262-3267.
Xing CHEN,Yan DENG. The role of glutamine metabolic reprogramming in macrophages in cardiovascular disease[J]. The Journal of Practical Medicine, 2024, 40(22): 3262-3267.
1 | 刘明波,何新叶,杨晓红,等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国心血管杂志,2024,29(4):305-324. |
2 |
YANG Y, KARAMPOOR S, MIRZAEI R, et al. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review [J]. Int Immunopharmacol, 2023, 121. doi:10.1016/j.intimp.2023.110546
doi: 10.1016/j.intimp.2023.110546 |
3 |
JIN H R, WANG J, WANG Z J, et al. Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics [J]. J Hematol Oncol, 2023, 16(1): 103. doi:10.1186/s13045-023-01498-2
doi: 10.1186/s13045-023-01498-2 |
4 |
JEONG H, LEE B, HAN S J, et al. Glucose metabolic reprogramming in autoimmune diseases [J]. Anim Cells Syst, 2023, 27(1): 149-158. doi:10.1080/19768354.2023.2234986
doi: 10.1080/19768354.2023.2234986 |
5 |
DURANTE W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease [J]. Nutrients, 2019, 11(9):2092. doi:10.3390/nu11092092
doi: 10.3390/nu11092092 |
6 |
SHEN Y, ZHANG Y, LI W, et al. Glutamine metabolism: From proliferating cells to cardiomyocytes [J]. Metabolism, 2021, 121: 154778. doi:10.1016/j.metabol.2021.154778
doi: 10.1016/j.metabol.2021.154778 |
7 |
MATéS J M, DI PAOLA F J, CAMPOS-SANDOVAL J A, et al. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer [J]. Semi Cell Develop Biol, 2020, 98: 34-43. doi:10.1016/j.semcdb.2019.05.012
doi: 10.1016/j.semcdb.2019.05.012 |
8 |
DURANTE W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19 [J]. Int J Mol Sci, 2023, 24(8):7593. doi:10.3390/ijms24087593
doi: 10.3390/ijms24087593 |
9 |
SONG W, LI D, TAO L, et al. Solute carrier transporters: The metabolic gatekeepers of immune cells [J]. Acta Pharm Sin B, 2020, 10(1): 61-78. doi:10.1016/j.apsb.2019.12.006
doi: 10.1016/j.apsb.2019.12.006 |
10 |
SCALISE M, POCHINI L, PINGITORE P, et al. Cysteine is not a substrate but a specific modulator of human ASCT2 (SLC1A5) transporter [J]. FEBS Lett, 2015, 589(23): 3617-3623. doi:10.1016/j.febslet.2015.10.011
doi: 10.1016/j.febslet.2015.10.011 |
11 |
BHUTIA Y D, BABU E, RAMACHANDRAN S, et al. Amino Acid Transporters in Cancer and Their Relevance to “Glutamine Addiction”: Novel Targets for the Design of a New Class of Anticancer Drugs [J]. Cancer Res, 2015, 75(9): 1782-1788. doi:10.1158/0008-5472.can-14-3745
doi: 10.1158/0008-5472.can-14-3745 |
12 |
YOO H C, PARK S J, NAM M, et al. A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells [J]. Cell Metab, 2020, 31(2): 267-83.e12. doi:10.1016/j.cmet.2019.11.020
doi: 10.1016/j.cmet.2019.11.020 |
13 |
YOO H C, YU Y C, SUNG Y, et al. Glutamine reliance in cell metabolism [J]. Experi Mol Med, 2020, 52(9): 1496-1516. doi:10.1038/s12276-020-00504-8
doi: 10.1038/s12276-020-00504-8 |
14 |
LI S, ZENG H, FAN J, et al. Glutamine metabolism in breast cancer and possible therapeutic targets [J]. Biochem Pharmacol, 2023, 210: 115464. doi:10.1016/j.bcp.2023.115464
doi: 10.1016/j.bcp.2023.115464 |
15 |
CRUZAT V, MACEDO ROGERO M, NOEL KEANE K, et al. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation [J]. Nutrients, 2018, 10(11):1564. doi:10.3390/nu10111564
doi: 10.3390/nu10111564 |
16 |
SHANG M, CAPPELLESSO F, AMORIM R, et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration [J]. Nature, 2020, 587(7835): 626-631. doi:10.1038/s41586-020-2857-9
doi: 10.1038/s41586-020-2857-9 |
17 |
PENG Y, ZHOU M, YANG H, et al. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases [J]. Mediators Inflamm, 2023, 2023: 8821610. doi:10.1155/2023/8821610
doi: 10.1155/2023/8821610 |
18 |
MENG D, YANG Q, WANG H, et al. Glutamine and asparagine activate mTORC1 independently of Rag GTPases [J]. J Biol Chem, 2020, 295(10): 2890-2899. doi:10.1074/jbc.ac119.011578
doi: 10.1074/jbc.ac119.011578 |
19 | 李泽桦,曾宇宏,冯丽芸,等. 氧化三甲胺促进M1型巨噬细胞极化加剧心肌梗死后心室重构[J]. 实用医学杂志,2022,38(20):2531-2537,2544. |
20 | 黄翔雨,申晓青, ZHOU Zheng,等. 细菌脂多糖及高迁移率族蛋白1对小鼠巨噬细胞M1/M2极化分型的影响[J]. 实用医学杂志,2018,34(6):929-932. |
21 |
FESTUCCIA W T. Regulation of Adipocyte and Macrophage Functions by mTORC1 and 2 in Metabolic Diseases [J]. Mol Nutr Food Res, 2021, 65(1): e1900768. doi:10.1002/mnfr.201900768
doi: 10.1002/mnfr.201900768 |
22 |
CORCORAN S E, O'NEILL L A. HIF1alpha and metabolic reprogramming in inflammation [J]. J Clin Invest, 2016, 126(10): 3699-3707. doi:10.1172/jci84431
doi: 10.1172/jci84431 |
23 |
KARUNAKARAN D, THRUSH A B, NGUYEN M A, et al. Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis [J]. Circ Res, 2015, 117(3): 266-278. doi:10.1161/circresaha.117.305624
doi: 10.1161/circresaha.117.305624 |
24 | 储莉,刘伏元,王烈成. 巨噬细胞极化及其在老年下肢动脉粥样硬化发生中的相关性[J]. 实用医学杂志,2015,31(6):944-947. |
25 |
XIAO Q, HOU R, XIE L, et al. Macrophage metabolic reprogramming and atherosclerotic plaque microenvironment: Fostering each other?[J]. Clin Transl Med, 2023,13(5):e1257. doi:10.1002/ctm2.1257
doi: 10.1002/ctm2.1257 |
26 |
ROM O, GRAJEDA-IGLESIAS C, NAJJAR M, et al. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: A key role for triglyceride metabolism [J]. J Nutr Biochem, 2017, 45: 24-38. doi:10.1016/j.jnutbio.2017.02.023
doi: 10.1016/j.jnutbio.2017.02.023 |
27 |
ZHANG H, WANG C, SUN H, et al. Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro [J]. Proteomics, 2024, 24(5): e2300179. doi:10.1002/pmic.202300179
doi: 10.1002/pmic.202300179 |
28 |
PARK D, HAN C Z, ELLIOTT M R, et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein [J]. Nature, 2011, 477(7363): 220-224. doi:10.1038/nature10340
doi: 10.1038/nature10340 |
29 |
MORIOKA S, PERRY J S A, RAYMOND M H, et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release [J]. Nature, 2018, 563(7733): 714-718. doi:10.1038/s41586-018-0735-5
doi: 10.1038/s41586-018-0735-5 |
30 |
TABAS I, BORNFELDT K E. Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis [J]. Circ Res, 2020, 126(9): 1209-1227. doi:10.1161/circresaha.119.315939
doi: 10.1161/circresaha.119.315939 |
31 |
FREEMERMAN A J, JOHNSON A R, SACKS G N, et al. Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype [J]. J Biol Chem, 2014, 289(11): 7884-9786. doi:10.1074/jbc.m113.522037
doi: 10.1074/jbc.m113.522037 |
32 | FUKUZUMI M, SHINOMIYA H, SHIMIZU Y, et al. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1 [J]. Infect Imm, 2016, 64(1): 108-112. |
33 |
VATS D, MUKUNDAN L, ODEGAARD J I, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation [J]. Cell Metab, 2006, 4(1): 13-24. doi:10.1016/j.cmet.2006.05.011
doi: 10.1016/j.cmet.2006.05.011 |
34 |
SUN X, LI Y, DENG Q, et al. Macrophage Polarization, Metabolic Reprogramming, and Inflammatory Effects in Ischemic Heart Disease [J]. Front Immunol, 2022, 13: 934040. doi:10.3389/fimmu.2022.934040
doi: 10.3389/fimmu.2022.934040 |
35 |
YAKUPOVA E I, MALEEV G V, KRIVTSOV A V, et al. Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism [J]. Exp Biol Med (Maywood, NJ), 2022, 247(11): 958-971. doi:10.1177/15353702221080130
doi: 10.1177/15353702221080130 |
36 |
ZHANG Y. The essential role of glutamine metabolism in diabetic cardiomyopathy: A review [J]. Medicine (Baltimore), 2023, 102(47): e36299. doi:10.1097/md.0000000000036299
doi: 10.1097/md.0000000000036299 |
37 |
NIZAMUTDINOVA I T, GULERIA R S, SINGH A B, et al. Retinoic acid protects cardiomyocytes from high glucose‐induced apoptosis through inhibition of NF‐κB signaling Pathway [J]. J Cell Physiol, 2012, 228(2): 380-392. doi:10.1002/jcp.24142
doi: 10.1002/jcp.24142 |
38 |
PAN Y, WANG Y, ZHAO Y, et al. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy [J]. Diabetes, 2014, 63(10): 3497-511. doi:10.2337/db13-1577
doi: 10.2337/db13-1577 |
39 |
MENG L, LIN H, HUANG X, et al. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA [J]. Cell Death Dis, 2022, 13(1): 38. doi:10.1038/s41419-021-04484-z
doi: 10.1038/s41419-021-04484-z |
40 |
ZHAO R X, LI W J, LU Y R, et al. Increased peripheral proinflammatory T helper subsets contribute to cardiovascular complications in diabetic patients [J]. Mediators Inflamm, 2014, 2014: 596967. doi:10.1155/2014/596967
doi: 10.1155/2014/596967 |
41 |
DU S, SHI H, XIONG L, et al. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy [J]. Frontiers Endocrinol, 2022, 13. doi:10.3389/fendo.2022.1011669
doi: 10.3389/fendo.2022.1011669 |
42 |
GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and Transferrin Regulate Ferroptosis [J]. Molecular Cell, 2015, 59(2): 298-308. doi:10.1016/j.molcel.2015.06.011
doi: 10.1016/j.molcel.2015.06.011 |
43 |
ZHANG M Q, WANG C C, PANG X B, et al. Role of macrophages in pulmonary arterial hypertension [J]. Frontiers Immunol, 2023, 14. doi:10.3389/fimmu.2023.1152881
doi: 10.3389/fimmu.2023.1152881 |
44 |
AL-QAZAZI R, LIMA P D A, PRISCO S Z, et al. Macrophage-NLRP3 Activation Promotes Right Ventricle Failure in Pulmonary Arterial Hypertension[J]. Am J Respir Crit Care Med,2022,206(5):608-624. doi:10.1164/rccm.202110-2274oc
doi: 10.1164/rccm.202110-2274oc |
45 |
LI M, RIDDLE S, KUMAR S, et al. Microenvironmental Regulation of Macrophage Transcriptomic and Metabolomic Profiles in Pulmonary Hypertension [J]. Front Immunol, 2021, 12: 640718. doi:10.3389/fimmu.2021.640718
doi: 10.3389/fimmu.2021.640718 |
46 |
HE Y Y, YAN Y, JIANG X, et al. Spermine promotes pulmonary vascular remodelling and its synthase is a therapeutic target for pulmonary arterial hypertension [J]. Eur Respir J, 2020,56(5):2000522. doi:10.1183/13993003.00522-2020
doi: 10.1183/13993003.00522-2020 |
47 |
BERTERO T, OLDHAM W M, COTTRILL K A, et al. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension [J]. J Clin Invest, 2016, 126(9): 3313-3335. doi:10.1172/jci86387
doi: 10.1172/jci86387 |
48 |
GNATCHIK R A, BRITTAIN E L, SHAH A T, et al. Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension [J]. Pulm Circ, 2017, 7(1): 186-199. doi:10.1086/690236
doi: 10.1086/690236 |
49 |
RYAN J J, ARCHER S L. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure [J]. Circulation research, 2014, 115(1): 176-188. doi:10.1161/circresaha.113.301129
doi: 10.1161/circresaha.113.301129 |
50 |
PIAO L, FANG Y H, PARIKH K, et al. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension [J]. J Mol Med(Berlin, Germany), 2013, 91(10): 1185-1197. doi:10.1007/s00109-013-1064-7
doi: 10.1007/s00109-013-1064-7 |
51 |
PIRES R S, BRAGA P G S, SANTOS J M B, et al. l-Glutamine supplementation enhances glutathione peroxidase and paraoxonase-1 activities in HDL of exercising older individuals [J]. Exp Gerontol, 2021, 156: 111584. doi:10.1016/j.exger.2021.111584
doi: 10.1016/j.exger.2021.111584 |
52 |
ZHANG X, QIN Y, WAN X, et al. Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities [J]. J Transl Med, 2021, 19(1): 62. doi:10.1186/s12967-021-02727-3
doi: 10.1186/s12967-021-02727-3 |
53 |
NICKLIN P, BERGMAN P, ZHANG B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy [J]. Cell, 2009, 136(3): 521-534. doi:10.1016/j.cell.2008.11.044
doi: 10.1016/j.cell.2008.11.044 |
54 |
JOSEPH P, GLYNN R, LONN E, et al. Rosuvastatin for the prevention of venous thromboembolism: A pooled analysis of the HOPE-3 and JUPITER randomized controlled trials [J]. Nat Cardiovasc Res, 2022, 118(3): 897-903. doi:10.1093/cvr/cvab078
doi: 10.1093/cvr/cvab078 |
55 |
TIAN Z, ZHANG Y, LYU X. Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-β/Smad2/3 axis activation [J]. Cell Cycle (Georgetown, Tex), 2021, 20(9): 874-893. doi:10.1080/15384101.2021.1907512
doi: 10.1080/15384101.2021.1907512 |
56 |
KIM J, WANG C, DE SABANDO A R, et al. The Novel Small-Molecule SR18662 Efficiently Inhibits the Growth of Colorectal Cancer In Vitro and In Vivo [J]. Mol Cancer Ther, 2019, 18(11): 1973-1984. doi:10.1158/1535-7163.mct-18-1366
doi: 10.1158/1535-7163.mct-18-1366 |
57 |
TIAN Z, ZHANG Y, LYU X. Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-beta/Smad2/3 axis activation [J]. Cell Cycle, 2021, 20(9): 874-893. doi:10.1080/15384101.2021.1907512
doi: 10.1080/15384101.2021.1907512 |
58 |
LI J, YE Y, LIU Z, et al. Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition [J]. Nat Cancer, 2022, 3(4): 453-470. doi:10.1038/s43018-022-00354-5
doi: 10.1038/s43018-022-00354-5 |
59 |
CUI Z H, ZHANG X J, SHANG H Q, et al. Glutamine protects myocardial ischemia-reperfusion injury in rats through the PI3K/Akt signaling pathway [J]. Eur Rev Med Pharmacolog Sci, 2020, 24(1): 444-451. doi:10.23736/s0026-4725.19.05102-8
doi: 10.23736/s0026-4725.19.05102-8 |
60 |
SUFIT A, WEITZEL L B, HAMIEL C, et al. Pharmacologically dosed oral glutamine reduces myocardial injury in patients undergoing cardiac surgery: A randomized pilot feasibility trial [J]. JPEN J Parenter Enteral Nutri, 2012, 36(5): 556-561. doi:10.1177/0148607112448823
doi: 10.1177/0148607112448823 |
61 | LIU F, LI Y, LIU G. MicroRNA-200c exacerbates the ischemia/reperfusion injury of heart through targeting the glutaminase (GLS)-mediated glutamine metabolism [J]. Eur Rev Med Pharmacol Sci, 2017, 21(14): 3282-3289. |
62 |
HE B, XIAO J, REN A J, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning [J]. J Biomed Sci, 2011, 18(1): 22. doi:10.1186/1423-0127-18-22
doi: 10.1186/1423-0127-18-22 |
63 |
JIN L, ALESI G N, KANG S. Glutaminolysis as a target for cancer therapy [J]. Oncogene, 2016, 35(28): 3619-3625. doi:10.1038/onc.2015.447
doi: 10.1038/onc.2015.447 |
64 |
DELGIR S, BASTAMI M, ILKHANI K, et al. The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer [J]. Mutat Res Rev Mutat Res, 2021, 787: 108366. doi:10.1016/j.mrrev.2021.108366
doi: 10.1016/j.mrrev.2021.108366 |
65 | AHLUWALIA G S, GREM J L, HAO Z, et al. Metabolism and action of amino acid analog anti-cancer agents [J]. Pharmacol Ther, 2009, 46(2): 243-271. |
[1] | 李爱琴,张震,徐雅楠,朱金源,张旭. 急性呼吸窘迫综合征肺纤维化中巨噬细胞和成纤维细胞相互作用的研究进展[J]. 实用医学杂志, 2024, 40(4): 571-574. |
[2] | 盖林林,孙维策,褚锦锦,徐栋花. 活动性肺结核相关巨噬细胞M1/M2极化的改变及ESAT6对巨噬细胞极化的影响[J]. 实用医学杂志, 2024, 40(20): 2867-2873. |
[3] | 蔡兴,马兴龙,周长健,谢鹏,沈松璇,缪宴梅,宋佳美,谢雷宇. 巨噬细胞糖酵解在脓毒症中的研究进展[J]. 实用医学杂志, 2024, 40(19): 2783-2788. |
[4] | 杨剑波,邵继春,曾治军,赵涛,王兴. lncRNA MIF-AS1调节miR-423-5p/PYCR1轴对前列腺癌细胞恶性生物学行为的影响[J]. 实用医学杂志, 2024, 40(18): 2544-2549. |
[5] | 陈玉善,王婷婷,韩心怡,华成俊,靳博远,尚莎莎,宗永华,梁亚州. 小檗碱联合姜黄素调控M1巨噬细胞极化对动脉粥样硬化的作用机制[J]. 实用医学杂志, 2024, 40(14): 1915-1921. |
[6] | 陈桂容,王明刚,林华明,陈鑫鑫,罗娟,叶凤琴,王秀峰. 肝巨噬细胞及其可塑性特征对治疗慢加急性肝衰竭的潜在价值及研究进展[J]. 实用医学杂志, 2024, 40(14): 2035-2040. |
[7] | 龙淳,毕红英,杨昌珍,王家锴,唐艳,刘旭. 大黄素上调Sirt2减轻脂多糖致RAW264.7细胞的氧化应激反应[J]. 实用医学杂志, 2024, 40(13): 1785-1790. |
[8] | 王静 高煜茹 蔡钱伟 朱委委 黄潇 孙大康 王晓芝 王涛 . 瑞马唑仑通过调节肺泡巨噬细胞极化减轻脂多糖诱导的急性肺损伤 [J]. 实用医学杂志, 2023, 39(9): 1092-1097. |
[9] | 魏思东,陈凯歌,张继翔,轩娟娟,王耀权,苗舜,赵开心,王维伟,陈国勇. 白细胞分化抗原74和 CXC 趋化因子配体9阳性巨噬细胞亚群在大鼠肝移植排斥反应中的作用[J]. 实用医学杂志, 2023, 39(23): 3027-3033. |
[10] | 马丽娜,曹振华,杨冰. 小而密低密度脂蛋白胆固醇、CXC型趋化因子配体12与糖尿病患者并发心血管疾病的相关性[J]. 实用医学杂志, 2023, 39(22): 2953-2957. |
[11] | 王小霞,黄巧,彭闵,申铁梅. 心血管疾病老年共病患者出院准备服务的应用效果[J]. 实用医学杂志, 2023, 39(22): 3005-3009. |
[12] | 熊思渊,王璐,田俊杰,谷扬,马雅静,马克涛,张莹莹,李新芝. 连接蛋白43在氧化低密度脂蛋白诱导RAW264.7细胞自噬中的作用[J]. 实用医学杂志, 2023, 39(20): 2572-2578. |
[13] | 付雪峰 娄思玉 彭章丽. 结核分枝杆菌Rv3737抑制巨噬细胞自噬促进耻垢分枝杆菌在巨噬细胞内的存活[J]. 实用医学杂志, 2023, 39(2): 198-203. |
[14] | 杨如玉 梁炎春 韦雅婧 黄碧淇 杨帆 谭灏 温磊 陆曦 牛刚. 缺氧诱导HIF⁃1α在子宫内膜异位症巨噬细胞极化异常的作用及机制研究 [J]. 实用医学杂志, 2022, 38(8): 964-969. |
[15] | 袁静 夏金婵 郭晓琦 江华. 基于巨噬细胞可塑性的中药防治急性肺损伤的研究进展[J]. 实用医学杂志, 2022, 38(5): 644-649. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||