1 |
ZHU X, SHEN X, HOU X, et al. Total glucosides of paeony for the treatment of rheumatoid arthritis: A methodological and reporting quality evaluation of systematic reviews and meta-analyses[J]. Int Immunopharmacol, 2020,88:106920. doi:10.1016/j.intimp.2020.106920
doi: 10.1016/j.intimp.2020.106920
|
2 |
XIANG G, GAO M, QIN H, et al. Benefit-risk assessment of traditional Chinese medicine preparations of sinomenine using multicriteria decision analysis (MCDA) for patients with rheumatoid arthritis[J]. BMC Complement Med Ther, 2023,23(1):37. doi:10.1186/s12906-023-03864-6
doi: 10.1186/s12906-023-03864-6
|
3 |
XU D, LIANG J, LIN J, et al. PKM2: A Potential Regulator of Rheumatoid Arthritis via Glycolytic and Non-Glycolytic Pathways[J]. Front Immunol, 2019,10:2919. doi:10.3389/fimmu.2019.02919
doi: 10.3389/fimmu.2019.02919
|
4 |
甘珮荣, 刘超, 吴虹, 等. HIF-VEGF-Ang-2信号转导介导的滑膜血管新生在类风湿关节炎中的作用[J]. 药学学报, 2021,56(5):1246-1252.
|
5 |
ELSHABRAWY H A, CHEN Z, VOLIN M V, et al. The pathogenic role of angiogenesis in rheumatoid arthritis[J]. Angiogenesis, 2015,18(4):433-448. doi:10.1007/s10456-015-9477-2
doi: 10.1007/s10456-015-9477-2
|
6 |
GUO X, JI J, FENG Z, et al. A network pharmacology approach to explore the potential targets underlying the effect of sinomenine on rheumatoid arthritis[J]. Int Immunopharmacol, 2020,80:106201. doi:10.1016/j.intimp.2020.106201
doi: 10.1016/j.intimp.2020.106201
|
7 |
GUO X, JI J, JOSE K S G, et al. Computational Prediction of Antiangiogenesis Synergistic Mechanisms of Total Saponins of Panax japonicus Against Rheumatoid Arthritis[J]. Front Pharmacol, 2020,11:566129. doi:10.3389/fphar.2020.566129
doi: 10.3389/fphar.2020.566129
|
8 |
LIANG M, YAN L, MEI Z, et al. Methodological and reporting quality evaluation of meta-analyses on the Chinese herbal preparation Zheng Qing Feng Tong Ning for the treatment of rheumatoid arthritis[J]. BMC Complement Med Ther, 2020,20(1):195. doi:10.1186/s12906-020-02978-5
doi: 10.1186/s12906-020-02978-5
|
9 |
HU Q, ZHANG W, WU Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects[J]. Pharmacol Res, 2021,165:105444. doi:10.1016/j.phrs.2021.105444
doi: 10.1016/j.phrs.2021.105444
|
10 |
FU Y J, XU B, HUANG S W, et al. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14[J]. Acta Pharmacol Sin, 2021,42(1):88-96. doi:10.1038/s41401-020-0411-9
doi: 10.1038/s41401-020-0411-9
|
11 |
BAO M, MA Y, LIANG M, et al. Research progress on pharmacological effects and new dosage forms of baicalin[J]. Vet Med Sci, 2022,8(6):2773-2784. doi:10.1002/vms3.960
doi: 10.1002/vms3.960
|
12 |
PENG L Y, YUAN M, WU Z M, et al. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses[J]. Sci Rep, 2019,9(1):4063. doi:10.1038/s41598-019-40684-6
doi: 10.1038/s41598-019-40684-6
|
13 |
YANG Y X, LI H, BAI L, et al. Bioinformatics analysis of ceRNA regulatory network of baicalin in alleviating pathological joint alterations in CIA rats[J]. Eur J Pharmacol, 2023,951:175757. doi:10.1016/j.ejphar.2023.175757
doi: 10.1016/j.ejphar.2023.175757
|
14 |
CHEN X, WANG Y, CAI J, et al. Anti-inflammatory effect of baicalin in rats with adjuvant arthritis and its autophagy- related mechanism[J]. Technol Health Care, 2022,30(S1):191-200. doi:10.3233/thc-228018
doi: 10.3233/thc-228018
|
15 |
WANG J, CHEN S, ZHANG J, et al. Scutellaria baicalensis georgi is a promising candidate for the treatment of autoimmune diseases[J]. Front Pharmacol, 2022,13:946030. doi:10.3389/fphar.2022.946030
doi: 10.3389/fphar.2022.946030
|
16 |
钟赣生. 中药学[M]. 3版. 北京:中国中医药出版社, 2012.
|
17 |
段航, 王林华, 邝高艳, 等. 汉黄芩素在骨关节炎中的药理作用及其机制的研究进展[J]. 中成药, 2023,45(12):4030-4035.
|
18 |
褚冬青, 马春宇. 黄芩苷增强阿霉素抗人舌癌细胞活性及其机制研究[J]. 中药新药与临床药理, 2019,30(9):1062-1068.
|
19 |
陈馨, 张欣然, 牟立婷, 等. 基于UHPLC-Q-Orbitrap-MS鉴定黄芩的化学成分及血中移行成分[J]. 中草药, 2023,54(9):2722-2732.
|
20 |
程鹏飞, 王涛, 陈聪聪, 等. 基于植物代谢组学和靶标定量分析研究山西不同产地黄芩叶化学成分差异[J]. 药学学报, 2023,58(7):1867-1879.
|
21 |
吴文娟, 曾妮, 王硕莹, 等. 黄芩苷对支原体肺炎小鼠TLR4/NF-κB信号通路的抗炎及肺功能保护作用[J]. 中华医院感染学杂志, 2023,33(23):3521-3526.
|
22 |
SHEN B, ZHANG H, ZHU Z, et al. Baicalin Relieves LPS-Induced Lung Inflammation via the NF-κB and MAPK Pathways[J]. Molecules, 2023,28(4):1873. doi:10.3390/molecules28041873
doi: 10.3390/molecules28041873
|
23 |
JING X, HUO J, LI L, et al. Baicalin Relieves Airway Inflammation in COPD by Inhibiting miR-125a[J]. Appl Biochem Biotechnol, 2023,28(13):115.
|
24 |
黎乃维,钟雨芬,熊林欣,等. 黄芩苷调控NLRP3炎症小体活化在牙周炎性骨吸收治疗中的研究现状[J]. 中国临床药理学杂志, 2023,39(19):2866-2870.
|
25 |
于文静, 杨苗, 贺春香, 等. 黄芩苷通过TLR4/MyD88/NF-κB通路抑制链脲佐菌素诱导的阿尔茨海默病大鼠模型神经炎症反应[J]. 中国药理学通报, 2023,39(1):83-89.
|
26 |
吴峰淼, 叶凯丽, 刘曦. 黄芩苷对大鼠胶原诱导性关节炎JAK/STAT3信号通路及Th17/Treg免疫平衡的影响[J]. 中国药师, 2020,23(2):246-251.
|
27 |
王广志, 姜楠, 赛凤英, 等. 黄芩苷对胶原诱导性关节炎大鼠抗炎作用研究[J]. 中国药物与临床, 2017,17(4):498-501.
|
28 |
DINDA B, DINDA S, DASSHARMA S, et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders[J]. Eur J Med Chem, 2017,131:68-80. doi:10.1016/j.ejmech.2017.03.004
doi: 10.1016/j.ejmech.2017.03.004
|
29 |
CHEN J, WU F, LONG Y, et al. Glutathione Supplementation Attenuates Oxidative Stress and Improves Vascular Hyporesponsiveness in Experimental Obstructive Jaundice[J]. Oxid Med Cell Longev, 2015,2015:486148. doi:10.1155/2015/486148
doi: 10.1155/2015/486148
|
30 |
ZHA A, YUAN D, CUI Z, et al. The Evaluation of the Antioxidant and Intestinal Protective Effects of Baicalin-Copper in Deoxynivalenol-Challenged Piglets[J]. Oxid Med Cell Longev, 2020,2020:5363546. doi:10.1155/2020/5363546
doi: 10.1155/2020/5363546
|
31 |
MATEEN S, ZAFAR A, MOIN S, et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis[J]. Clin Chim Acta, 2016,455:161-171. doi:10.1016/j.cca.2016.02.010
doi: 10.1016/j.cca.2016.02.010
|
32 |
DEGBOÉ Y, RAUWEL B, BARON M, et al. Polarization of Rheumatoid Macrophages by TNF Targeting Through an IL-10/STAT3 Mechanism[J]. Front Immunol, 2019,10(7):3. doi:10.3389/fimmu.2019.00003
doi: 10.3389/fimmu.2019.00003
|
33 |
张炜, 王莉, 杨雨欣, 等. 黄芩苷调节let-7i-3p/PI3K/Akt/NF-κB信号轴减轻类风湿关节炎成纤维样滑膜细胞NLRP3炎性小体活化[J]. 中国药理学通报, 2023,39(12):2313-2319.
|
34 |
ZHANG Q, LIU J, ZHANG M, et al. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis[J]. Biomolecules, 2019,9(12):795. doi:10.3390/biom9120795
doi: 10.3390/biom9120795
|
35 |
WANG H Z, WANG H H, HUANG S S, et al. Inhibitory effect of baicalin on collagen-induced arthritis in rats through the nuclear factor-κB pathway[J]. J Pharmacol Exp Ther, 2014,350(2):435-443. doi:10.1124/jpet.114.215145
doi: 10.1124/jpet.114.215145
|
36 |
徐德钢, 钱文旭, 王武, 等. 川陈皮素调节Notch/NF-κB/NLRP3信号通路对类风湿关节炎大鼠炎性损伤的影响[J]. 免疫学杂志, 2023,39(7):616-624.
|
37 |
王宏志, 葛存兴, 王广志, 等. 黄芩苷对人成纤维细胞样滑膜细胞(类风湿关节炎)的影响研究[J]. 齐齐哈尔医学院学报, 2017,38(2):129-131.
|
38 |
李辉明,薄双娟,邢涛,等.MAPK信号通路在防治类风湿关节炎中的作用及中药干预研究进展[J].中国实验方剂学杂志,2024,30(14):288-298.
|
39 |
WANG B, SHEN J. NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis[J]. Front Immunol, 2022,13:895636. doi:10.3389/fimmu.2022.895636
doi: 10.3389/fimmu.2022.895636
|
40 |
欧阳龙强, 夏文燕, 杨少春, 等. 黄芩苷通过调节Fas/FasL信号通路减轻小鼠癫痫持续状态神经细胞凋亡的机制[J]. 中国当代医药, 2023,30(29):15-18.
|
41 |
WANG C, SONG Y, WANG X, et al. Baicalin Ameliorates Collagen-Induced Arthritis Through the Suppression of Janus Kinase 1 (JAK1)/Signal Transducer and Activator of Transcription 3 (STAT3) Signaling in Mice[J]. Med Sci Monit, 2018,24:9213-9222. doi:10.12659/msm.910347
doi: 10.12659/msm.910347
|
42 |
王春晓. 黄芩苷对类风湿关节炎模型小鼠的治疗作用和机制[D]. 济南:山东大学, 2019.
|
43 |
司梦鸽. 黄芩素和类叶牡丹联合用药对SW982细胞的增殖和凋亡的影响及其机制研究[D]. 延吉:延边大学, 2022.
|
44 |
HANG Y, QIN X, REN T, et al. Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial[J]. Lipids Health Dis, 2018,17(1):146. doi:10.1186/s12944-018-0797-2
doi: 10.1186/s12944-018-0797-2
|
45 |
刘筝. 黄芩苷、青藤碱、吉马酮对THP-1细胞TLR8调节作用研究[D]. 南宁:广西中医药大学, 2017.
|
46 |
李舒, 万磊, 赵磊, 等. 黄芩清热除痹胶囊治疗类风湿关节炎临床观察及对血清M1、M2型炎症因子影响[J]. 中药药理与临床, 2022,38(2):190-194.
|
47 |
张玉婷, 汪永忠, 姜辉, 等. 五味温通除痹胶囊的UPLC指纹图谱研究[J]. 现代中药研究与实践, 2019,33(5):30-33.
|
48 |
贺明玉, 刘健, 孙艳秋, 等. 五味温通除痹胶囊治疗痹病寒湿痹阻证探讨[J]. 中医药临床杂志, 2022,34(2):203-207.
|
49 |
刘剑桥, 刘晓闯, 刘健, 等. 黄芩清热除痹胶囊HPLC指纹图谱初步研究及3个成分含量测定[J]. 中国医药生物技术, 2022,17(1):56-58.
|
50 |
董心同, 甘珮荣, 柯江涛, 等. UHPLC-MS/MS同时测定黄芩清热除痹胶囊中6种活性成分[J]. 安徽中医药大学学报, 2021,40(6):97-102.
|
51 |
JIANG H, LIU J, WANG Y, et al. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule[J]. J Mass Spectrom, 2021,56(5):e4711. doi:10.1002/jms.4711
doi: 10.1002/jms.4711
|
52 |
周红潮,杜锐,王慧,等.黄芩苷药代动力学研究进展[J].中国中药杂志,2018,43(4):684-688
|
53 |
刘雪艳,查代君. 黄酮类活性成分的代谢研究进展[J]. 福建医科大学学报, 2021,55(4):358-366.
|
54 |
WANG J, FENG X, LI Z, et al. The Flavonoid Components of Scutellaria baicalensis: Biopharmaceutical Properties and their Improvement using Nanoformulation Techniques[J]. Curr Top Med Chem, 2023,23(1):17-29. doi:10.2174/1568026623666221128144258
doi: 10.2174/1568026623666221128144258
|
55 |
HUANG T, LIU Y, ZHANG C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review[J]. Eur J Drug Metab Pharmacokinet, 2019,44(2):159-168. doi:10.1007/s13318-018-0509-3
doi: 10.1007/s13318-018-0509-3
|
56 |
XU W, NIU Y, AI X, et al. Liver-Targeted Nanoparticles Facilitate the Bioavailability and Anti-HBV Efficacy of Baicalin In Vitro and In Vivo[J]. Biomedicines, 2022,10(4):900. doi:10.3390/biomedicines10040900
doi: 10.3390/biomedicines10040900
|
57 |
陈怡健程晓敬邓琬亭 等. 基于分子模拟的黄芩苷/多糖复合物载体筛选及其制备和评价[J]. 中草药, 2024,3(5):1-17.
|
58 |
王会敏, 王萌. 治疗类风湿性关节炎的中药纳米制剂研究进展[J]. 中国中药杂志, 2019,44(18):3908-3916.
|
59 |
郑晓婷, 王宏军. 中药纳米制剂研究进展[J]. 中药与临床, 2020,11(4):60-62.
|
60 |
杨靖, 柳炜佳, 李英, 等. 中药纳米制剂研究进展[J]. 湖南中医药大学学报, 2024,44(4):706-712.
|
61 |
ZHAO L, WEI Y, HUANG Y, et al. Nanoemulsion improves the oral bioavailability of baicalin in rats: In vitro and in vivo evaluation[J]. Int J Nanomedicine, 2013,8(1):3769-3779.
|
62 |
王东轶, 商玮, 蔡辉. 靶向给药系统在类风湿关节炎中的应用[J]. 四川医学, 2023,44(10):1090-1093.
|