1 |
杨亚军,崔燎. FoxO/Wnt通路在氧化应激介导的骨质疏松中的调控机制[J]. 中国药理学通报,2013,29(1):27-30.
|
2 |
WANG L, YU W, YIN X, et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study[J]. JAMA Netw Open, 2021, 4(8):e2121106. doi:10.1001/jamanetworkopen.2021.21106
doi: 10.1001/jamanetworkopen.2021.21106
|
3 |
中华医学会骨质疏松和骨矿盐疾病分会,章振林. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学,2023,26(14):1671-1691.
|
4 |
SI Y, WANG C, GUO Y, et al. Prevalence of Osteoporosis in Patients with Type 2 Diabetes Mellitus in the Chinese Mainland: A Systematic Review and Meta-Analysis[J]. Iran J Public Health, 2019, 48(7): 1203-1214.
|
5 |
TURNER K J, VASU V, GRIFFIN D K. Telomere Biology and Human Phenotype [J]. Cells, 2019, 8(1):73. doi:10.3390/cells8010073
doi: 10.3390/cells8010073
|
6 |
HERRMANN M, PUSCEDDU I, MARZ W, et al. Telomere biology and age-related diseases [J]. Clin Chem Lab Med, 2018, 56(8): 1210-1222. doi:10.1515/cclm-2017-0870
doi: 10.1515/cclm-2017-0870
|
7 |
CHENG F, CARROLL L, JOGLEKAR M V, et al. Diabetes, metabolic disease, and telomere length [J]. Lancet Diabetes Endocrinol, 2021, 9(2): 117-126. doi:10.1016/s2213-8587(20)30365-x
doi: 10.1016/s2213-8587(20)30365-x
|
8 |
SNELSON M, LUCUT E, COUGHLAN M T. The Role of AGE-RAGE Signalling as a Modulator of Gut Permeability in Diabetes [J]. Int J Mol Sci, 2022, 23(3):1766. doi:10.3390/ijms23031766
doi: 10.3390/ijms23031766
|
9 |
DEO P, MCCULLOUGH C L, ALMOND T, et al. Dietary sugars and related endogenous advanced glycation end-products increase chromosomal DNA damage in WIL2-NS cells, measured using cytokinesis-block micronucleus cytome assay [J]. Mutagenesis, 2020, 35(2): 169-177. doi:10.1093/mutage/geaa002
doi: 10.1093/mutage/geaa002
|
10 |
陈晨,李莉. 晚期糖基化终产物及其受体在新疆维吾尔族2型糖尿病性骨质疏松症中的作用研究[J]. 中国社区医师,2020,36(32):22-23.
|
11 |
CAWTHON R M. Telomere measurement by quantitative PCR [J]. Nucleic Acids Res, 2002, 30(10): e47. doi:10.1093/nar/30.10.e47
doi: 10.1093/nar/30.10.e47
|
12 |
RHARASS T, LUCAS S. High Glucose Level Impairs Human Mature Bone Marrow Adipocyte Function Through Increased ROS Production [J]. Front Endocrinol (Lausanne), 2019, 10: 607. doi:10.3389/fendo.2019.00607
doi: 10.3389/fendo.2019.00607
|
13 |
BERGAMINI C M, GAMBETTI S, DONDI A D, et al. Oxygen, reactive oxygen species and tissue damage [J]. Curr Pharm Des, 2004, 10(14): 1611-1626. doi:10.2174/1381612043384664
doi: 10.2174/1381612043384664
|
14 |
ZHAO F, GUO L, WANG X, et al. Correlation of oxidative stress-related biomarkers with postmenopausal osteoporosis: a systematic review and meta-analysis [J]. Arch Osteoporos, 2021, 16(1): 4. doi:10.1007/s11657-020-00854-w
doi: 10.1007/s11657-020-00854-w
|
15 |
PERRONE A, GIOVINO A, BENNY J, et al. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects [J]. Oxid Med Cell Longev, 2020, 2020: 3818196. doi:10.1155/2020/3818196
doi: 10.1155/2020/3818196
|
16 |
FISHMAN S L, SONMEZ H, BASMAN C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review [J]. Mol Med, 2018, 24(1): 59. doi:10.1186/s10020-018-0060-3
doi: 10.1186/s10020-018-0060-3
|
17 |
SUZUKI A, YABU A, NAKAMURA H. Advanced glycation end products in musculoskeletal system and disorders [J]. Methods, 2022, 203: 179-186. doi:10.1016/j.ymeth.2020.09.012
doi: 10.1016/j.ymeth.2020.09.012
|
18 |
SAKAMOTO E, KIDO J I, TAKAGI R, et al. Advanced glycation end-product 2 and Porphyromonas gingivalis lipopolysaccharide increase sclerostin expression in mouse osteocyte-like cells [J]. Bone, 2019, 122: 22-30. doi:10.1016/j.bone.2019.02.001
doi: 10.1016/j.bone.2019.02.001
|
19 |
LLABRE J E, SROGA G E, TICE M J L, et al. Induction and rescue of skeletal fragility in a high-fat diet mouse model of type 2 diabetes: An in vivo and in vitro approach [J]. Bone, 2022, 156: 116302. doi:10.1016/j.bone.2021.116302
doi: 10.1016/j.bone.2021.116302
|
20 |
GE W, JIE J, YAO J, et al. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts [J]. Mol Med Rep, 2022, 25(4):140. doi:10.3892/mmr.2022.12656
doi: 10.3892/mmr.2022.12656
|
21 |
HEIN G, WIEGAND R, LEHMANN G, et al. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis [J]. Rheumatology (Oxford), 2003, 42(10): 1242-1246. doi:10.1093/rheumatology/keg324
doi: 10.1093/rheumatology/keg324
|
22 |
YAVUZ D G, APAYDIN T. Skin autofluorescence Is associated With low bone mineral density in type 2 diabetic patients [J]. J Clin Densitom, 2022, 25(3): 373-379. doi:10.1016/j.jocd.2021.11.010
doi: 10.1016/j.jocd.2021.11.010
|
23 |
AHMAD S, KHAN M S, AKHTER F, et al. Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation [J]. Glycobiology, 2014, 24(11): 979-990. doi:10.1093/glycob/cwu057
doi: 10.1093/glycob/cwu057
|
24 |
BARNES R P, FOUQUEREL E, OPRESKO P L. The impact of oxidative DNA damage and stress on telomere homeostasis [J]. Mech Ageing Dev, 2019, 177: 37-45. doi:10.1016/j.mad.2018.03.013
doi: 10.1016/j.mad.2018.03.013
|
25 |
CHAKRAVARTI D, LABELLA K A, DEPINHO R A. Telomeres: history, health, and hallmarks of aging [J]. Cell, 2021, 184(2): 306-322. doi:10.1016/j.cell.2020.12.028
doi: 10.1016/j.cell.2020.12.028
|
26 |
WANG J, DONG X, CAO L, et al. Association between telomere length and diabetes mellitus: A meta-analysis [J]. J Int Med Res, 2016, 44(6): 1156-1173. doi:10.1177/0300060516667132
doi: 10.1177/0300060516667132
|
27 |
TAMAYO M, MOSQUERA A, REGO J I, et al. Differing patterns of peripheral blood leukocyte telomere length in rheumatologic diseases [J]. Mutat Res, 2010, 683(1-2): 68-73. doi:10.1016/j.mrfmmm.2009.10.010
doi: 10.1016/j.mrfmmm.2009.10.010
|
28 |
VALDES A M, RICHARDS J B, GARDNER J P, et al. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis [J]. Osteoporos Int, 2007, 18(9): 1203-1210. doi:10.1007/s00198-007-0357-5
doi: 10.1007/s00198-007-0357-5
|
29 |
FRAGKIADAKI P, NIKITOVIC D, KALLIANTASI K, et al. Telomere length and telomerase activity in osteoporosis and osteoarthritis [J]. Exp Ther Med, 2020, 19(3): 1626-1632.
|
30 |
GRUBER H J, SEMERARO M D, RENNER W, et al. Telomeres and Age-Related Diseases [J]. Biomedicines, 2021, 9(10):1355. doi:10.3390/biomedicines9101335
doi: 10.3390/biomedicines9101335
|
31 |
PIGNOLO R J, LAW S F, CHANDRA A. Bone Aging, Cellular Senescence, and Osteoporosis [J]. JBMR Plus, 2021, 5(4): e10488. doi:10.1002/jbm4.10488
doi: 10.1002/jbm4.10488
|