1 |
张瑛, 周德生. 脑出血后神经炎症的研究进展[J]. 中国急救医学, 2022, 42(4):347-352. doi:10.3969/j.issn.1002-1949.2022.04.014
doi: 10.3969/j.issn.1002-1949.2022.04.014
|
2 |
李虹莹, 沈缘, 吴巧凤, 等. 小胶质细胞极化信号通路在神经炎症中的研究进展[J]. 实用医学杂志, 2022, 38(14): 1838-1841+1846. doi:10.3969/j.issn.1006⁃5725.2022.14.024
doi: 10.3969/j.issn.1006?5725.2022.14.024
|
3 |
SHI H, WANG X L, QUAN H F, et al. Effects of betaine on LPS-stimulated activation of microglial M1/M2 phenotypes by suppressing TLR4/NF-κB pathways in N9 cells[J]. Molecules, 2019, 24(2): 367. doi:10.3390/molecules24020367
doi: 10.3390/molecules24020367
|
4 |
GUO S, WANG H, YIN Y. Microglia polarization from M1 to M2 in neurodegenerative diseases[J]. Front Aging Neurosci, 2022, 14: 815347. doi:10.3389/fnagi.2022.815347
doi: 10.3389/fnagi.2022.815347
|
5 |
GABRIELA-FREITAS M, PINHEIRO J, RAQUEL-CUNHA A, et al. Rkip as an inflammatory and immune system modulator: Implications in cancer[J]. Biomolecules, 2019, 9(12): 769. doi:10.3390/biom9120769
doi: 10.3390/biom9120769
|
6 |
WEN L, TAO S, GUO F, et al. Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway[J]. Acta Pharmacol Sin, 2022, 43(8): 2067-2080. doi:10.1038/s41401-021-00837-8
doi: 10.1038/s41401-021-00837-8
|
7 |
GU L, SUN M, LI R, et al. Activation of RKIP Binding ASC Attenuates Neuronal Pyroptosis and Brain Injury via Caspase-1/GSDMD Signaling Pathway After Intracerebral Hemorrhage in Mice[J]. Transl Stroke Res, 2022, 13(6): 1037-1054. doi:10.1007/s12975-022-01009-4
doi: 10.1007/s12975-022-01009-4
|
8 |
SU L, ZHANG R, CHEN Y, et al. Raf kinase inhibitor protein attenuates ischemic-induced microglia cell apoptosis and activation through NF-κB pathway[J]. Cell Physiol Biochem, 2017, 41(3): 1125-1134. doi:10.1159/000464119
doi: 10.1159/000464119
|
9 |
WANG Z, CHEN Z, YANG J, et al. Treatment of secondary brain injury by perturbing postsynaptic density protein-95-NMDA receptor interaction after intracerebral hemorrhage in rats[J]. J Cereb Blood Flow Metab, 2019, 39(8): 1588-1601. doi:10.1177/0271678x18762637
doi: 10.1177/0271678x18762637
|
10 |
SUN J, SONG F H, WU J Y, et al. Sestrin2 overexpression attenuates osteoarthritis pain via induction of AMPK/PGC-1α-mediated mitochondrial biogenesis and suppression of neuroinflammation[J]. Brain Behav Immun, 2022, 102: 53-70. doi:10.1016/j.bbi.2022.02.015
doi: 10.1016/j.bbi.2022.02.015
|
11 |
OTHMAN M Z, HASSAN Z, HAS A T C. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory[J]. Exp Anim, 2022, 71(3): 264-280. doi:10.1538/expanim.21-0120
doi: 10.1538/expanim.21-0120
|
12 |
PAPALE M, NETTI G S, STALLONE G, et al. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools[J]. Cancers, 2022, 14(20): 5070. doi:10.3390/cancers14205070
doi: 10.3390/cancers14205070
|
13 |
CESSNA H, BARITAKI S, ZARAVINOS A, et al. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment[J]. Cancers, 2022, 14(19): 4596. doi:10.3390/cancers14194596
doi: 10.3390/cancers14194596
|
14 |
WU C, XU K, LIU W, et al. Protective Effect of Raf-1 Kinase Inhibitory Protein on Diabetic Retinal Neurodegeneration through P38-MAPK Pathway[J]. Curr Eye Res, 2022, 47(1): 135-142. doi:10.1080/02713683.2021.1944644
doi: 10.1080/02713683.2021.1944644
|
15 |
ARUNACHALAM A, LAKSHMANAN D K, RAVICHANDRAN G, et al. Regulatory mechanisms of heme regulatory protein BACH1: a potential therapeutic target for cancer[J]. Med Oncol, 2021, 38: 122. doi:10.1007/s12032-021-01573-z
doi: 10.1007/s12032-021-01573-z
|
16 |
ZHANG Z, FANG Y, LENAHAN C, et al. The role of immune inflammation in aneurysmal subarachnoid hemorrhage[J]. Exp Neurol, 2021, 336: 113535. doi:10.1016/j.expneurol.2020.113535
doi: 10.1016/j.expneurol.2020.113535
|
17 |
QU W, CHENG Y, PENG W, et al. Targeting iNOS alleviates early brain injury after experimental subarachnoid hemorrhage via promoting ferroptosis of M1 microglia and reducing neuroinflammation[J]. Mol Neurobiol, 2022, 59(5): 3124-3139. doi:10.1007/s12035-022-02788-5
doi: 10.1007/s12035-022-02788-5
|
18 |
WEI M, LI C, YAN Z, et al. Activated microglia exosomes mediated Mir-383-3P promotes neuronal necroptosis through inhibiting Atf4 expression in intracerebral hemorrhage[J]. Neurochem Res, 2021, 46: 1337-1349. doi:10.1007/s11064-021-03268-3
doi: 10.1007/s11064-021-03268-3
|
19 |
DOS SANTOS I R C, DIAS M N C, GOMES-LEAL W. Microglial activation and adult neurogenesis after brain stroke[J]. Neural Regen Res, 2021, 16(3): 456-459. doi:10.4103/1673-5374.291383
doi: 10.4103/1673-5374.291383
|
20 |
CHEN J, SUN L, LYU H, et al. Single-cell analysis of microglial transcriptomic diversity in subarachnoid haemorrhage[J]. Clin Transl Med, 2022, 12(4): e783. doi:10.1002/ctm2.783
doi: 10.1002/ctm2.783
|
21 |
LIN W, WANG N, ZHOU K, et al. RKIP mediates autoimmune inflammation by positively regulating IL-17R signaling[J]. EMBO reports, 2018, 19(6): e44951. doi:10.15252/embr.201744951
doi: 10.15252/embr.201744951
|
22 |
LI M, ZHANG D, GE X, et al. TRAF6-p38/JNK-ATF2 axis promotes microglial inflammatory activation[J]. Exp Cell Res, 2019, 376(2): 133-148. doi:10.1016/j.yexcr.2019.02.005
doi: 10.1016/j.yexcr.2019.02.005
|
23 |
WEN L, SUN W, XIA D, et al. The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway[J]. Neuroreport, 2020, 33(6): 243-251.
|
24 |
LU Y, CAO D L, MA L J, et al. TRAF6 contributes to CFA-induced spinal microglial activation and chronic inflammatory pain in mice[J]. Cell Mol Neurobiol, 2021, 42(5): 1543-1555. doi:10.1007/s10571-021-01045-y
doi: 10.1007/s10571-021-01045-y
|
25 |
HUANG T, JIA Z, FANG L, et al. Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis[J]. Brain Res Bull, 2022, 180: 73-85. doi:10.1016/j.brainresbull.2021.12.015
doi: 10.1016/j.brainresbull.2021.12.015
|