1 |
RIBEIRO A S F, ZEROLO B E, LÓPEZ-ESPUELA F, et al. Cardiac System during the Aging Process[J]. Aging Dis, 2023, 14(4): 1105-1122.
|
2 |
XIE S, XU S C, DENG W, et al. Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications[J]. Signal Transduct Target Ther, 2023, 8(1): 114. doi:10.1038/s41392-023-01378-8
doi: 10.1038/s41392-023-01378-8
|
3 |
LAZZERONI D, VILLATORE A, SOURYAL G, et al. The Aging Heart: A Molecular and Clinical Challenge[J]. Int J Mol Sci, 2022,23(24):16033. doi:10.3390/ijms232416033
doi: 10.3390/ijms232416033
|
4 |
李若男,杨俊,张静,等. 线粒体质量控制系统在心脏衰老中的研究进展[J]. 实用医学杂志, 2023,39(8):1052-1057. doi:10.3969/j.issn.1006-5725.2023.08.023
doi: 10.3969/j.issn.1006-5725.2023.08.023
|
5 |
MARVASTI T B, ALIBHAI F J, WLODAREK L, et al. Aging impairs human bone marrow function and cardiac repair following myocardial infarction in a humanized chimeric mouse[J]. Aging Cell, 2021, 20(11): e13494. doi:10.1111/acel.13494
doi: 10.1111/acel.13494
|
6 |
陈霞,武馨馨,刘星佑,等. 过表达NKx2.5基因间充质干细胞增强SDF-1/CXCR4轴促归巢改善心梗心功能[J]. 实用医学杂志, 2023,39(6):660-666.
|
7 |
LI J, LI S H, DONG J, et al. Long-term repopulation of aged bone marrow stem cells using young Sca-1 cells promotes aged heart rejuvenation[J]. Aging Cell, 2019, 18(6): e13026. doi:10.1111/acel.13026
doi: 10.1111/acel.13026
|
8 |
MARUNOUCHI T, SASAKI K, YANO E, et al. Transplantation of cardiac Sca-1-positive cells rather than c-Kit-positive cells preserves mitochondrial oxygen consumption of the viable myocardium following myocardial infarction in rats[J]. J Pharmacol Sci, 2019, 140(3): 236-241. doi:10.1016/j.jphs.2019.07.005
doi: 10.1016/j.jphs.2019.07.005
|
9 |
DASEKE M J 2 ND, TENKORANG M A A, CHALISE U,et al. Cardiac fibroblast activation during myocardial infarction wound healing: Fibroblast polarization after MI[J]. Matrix Biol, 2020, 91-92: 109-116. doi:10.1016/j.matbio.2020.03.010
doi: 10.1016/j.matbio.2020.03.010
|
10 |
SAWAKI D, CZIBIK G, PINI M, et al. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production[J]. Circulation, 2018, 138(8): 809-822. doi:10.1161/circulationaha.117.031358
doi: 10.1161/circulationaha.117.031358
|
11 |
LIU X, BURKE R M, LIGHTHOUSE J K, et al. p53 Regulates the Extent of Fibroblast Proliferation and Fibrosis in Left Ventricle Pressure Overload[J]. Circ Res, 2023, 133(3): 271-287. doi:10.1161/circresaha.121.320324
doi: 10.1161/circresaha.121.320324
|
12 |
YEGANEH A, ALIBHAI F J, TOBIN S W, et al. Age-related defects in autophagy alter the secretion of paracrine factors from bone marrow mononuclear cells[J]. Aging (Albany NY), 2021, 13(11): 14687-14708. doi:10.18632/aging.203127
doi: 10.18632/aging.203127
|
13 |
LI J, LI S H, WU J, et al. Young Bone Marrow Sca-1 Cells Rejuvenate the Aged Heart by Promoting Epithelial-to-Mesenchymal Transition[J]. Theranostics, 2018, 8(7): 1766-1781. doi:10.7150/thno.22788
doi: 10.7150/thno.22788
|
14 |
WANG Y, QIN W Y, WANG Q, et al. Young Sca-1(+) bone marrow stem cell-derived exosomes preserve visual function via the miR-150-5p/MEKK3/JNK/c-Jun pathway to reduce M1 microglial polarization[J]. J Nanobiotechnology, 2023, 21(1): 194. doi:10.1186/s12951-023-01944-w
doi: 10.1186/s12951-023-01944-w
|
15 |
朱国松, 王广治, 王开伟. 骨髓Sca-1间充质干细胞对肺移植后急性肺损伤的影响[J]. 实用医学杂志, 2020,36(22):3065-3068.
|
16 |
ZHOU H, BIAN Z Y, ZONG J, et al. Stem cell antigen 1 protects against cardiac hypertrophy and fibrosis after pressure overload[J]. Hypertension, 2012, 60(3): 802-809. doi:10.1161/hypertensionaha.112.198895
doi: 10.1161/hypertensionaha.112.198895
|
17 |
BAILEY B, FRANSIOLI J, GUDE N. A, et al. Sca-1 knockout impairs myocardial and cardiac progenitor cell function[J]. Circ Res, 2012, 111(6): 750-760. doi:10.1161/circresaha.112.274662
doi: 10.1161/circresaha.112.274662
|
18 |
LI S H, SUN Z, BRUNT K. R, et al. Reconstitution of aged bone marrow with young cells repopulates cardiac-resident bone marrow-derived progenitor cells and prevents cardiac dysfunction after a myocardial infarction[J]. Eur Heart J, 2013, 34(15): 1157-1167. doi:10.1093/eurheartj/ehs072
doi: 10.1093/eurheartj/ehs072
|
19 |
GUO Q Y, YANG J Q, FENG X X, et al. Regeneration of the heart: from molecular mechanisms to clinical therapeutics[J]. Mil Med Res, 2023, 10(1): 18. doi:10.1186/s40779-023-00452-0
doi: 10.1186/s40779-023-00452-0
|
20 |
MENG X, WANG H, SONG X, et al. The potential role of senescence in limiting fibrosis caused by aging[J]. J Cell Physiol, 2020, 235(5): 4046-4059. doi:10.1002/jcp.29313
doi: 10.1002/jcp.29313
|
21 |
SHIKATANI E A, WANG T, DINGWELL L S, et al. GDF5 deficiency prevents cardiac rupture following acute myocardial infarction in mice[J]. Cardiovasc Pathol, 2024, 68: 107581. doi:10.1016/j.carpath.2023.107581
doi: 10.1016/j.carpath.2023.107581
|
22 |
ZHAO X, BIAN R, WANG F, et al. GDF-5 promotes epidermal stem cells proliferation via Foxg1-cyclin D1 signaling[J]. Stem Cell Res Ther, 2021, 12(1): 42. doi:10.1186/s13287-020-02106-7
doi: 10.1186/s13287-020-02106-7
|
23 |
DESHMUKH T, CHONG J J H. Therapeutic Angiogenesis Using Growth Factors After Myocardial Infarction: From Recombinant Proteins to Gene Therapies and Beyond[J]. Heart Lung Circ, 2023, 32(7): 798-807. doi:10.1016/j.hlc.2023.05.018
doi: 10.1016/j.hlc.2023.05.018
|
24 |
MALINAUSKAS T, PEER T V, BISHOP B, et al. Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex[J]. Proc Natl Acad Sci U S A, 2020, 117(27): 15620-15631. doi:10.1073/pnas.2000561117
doi: 10.1073/pnas.2000561117
|
25 |
WENG P W, YADAV V K, PIKATAN N W, et al. Novel NFκB Inhibitor SC75741 Mitigates Chondrocyte Degradation and Prevents Activated Fibroblast Transformation by Modulating miR-21/GDF-5/SOX5 Signaling[J]. Int J Mol Sci, 2021, 22(20):11082. doi:10.3390/ijms222011082
doi: 10.3390/ijms222011082
|