The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (22): 3130-3137.doi: 10.3969/j.issn.1006-5725.2024.22.003
• Basic Research • Previous Articles Next Articles
Bing′er WU1,Qing LI1,Kerong YANG1,Jian ZHANG1,Yi YU1,Lei LEI1,2,Bo. HU1,2()
Received:
2024-04-07
Online:
2024-11-25
Published:
2024-11-25
Contact:
Bo. HU
E-mail:bhu@suda.edu.cn
CLC Number:
Bing′er WU,Qing LI,Kerong YANG,Jian ZHANG,Yi YU,Lei LEI,Bo. HU. Impact of spermidine on proliferation and apoptosis in diffuse large B⁃cell lymphoma cell lines[J]. The Journal of Practical Medicine, 2024, 40(22): 3130-3137.
Tab.1
The impact of spermidine on the growth of A20 cell lines"
组别 | 24 h OD值 (450 nm) | 48 h OD值 (450 nm) |
---|---|---|
Control组 | 0.254 ± 0.004 | 0.409 ± 0.012 |
2.5 μmol/L Spermidine组 | 0.251 ± 0.008** | 0.290 ± 0.024##*** |
5 μmol/L Spermidine组 | 0.237 ± 0.006# | 0.246 ± 0.004##* |
10 μmol/L Spermidine组 | 0.233 ± 0.006## | 0.224 ± 0.003## |
F值 | 17.22 | 190.0 |
P值 | < 0.000 1 | < 0.000 1 |
Tab.2
The impact of spermidine on the growth of OCI-Ly3 cell lines"
组别 | 24 h OD值 (450 nm) | 48 h OD值 (450 nm) |
---|---|---|
Control组 | 0.366 ± 0.015 | 0.724 ± 0.103 |
2.5 μmol/L Spermidine组 | 0.332 ± 0.013#** | 0.593 ± 0.127** |
5 μmol/L Spermidine组 | 0.306 ± 0.016###** | 0.482 ± 0.044##* |
10 μmol/L Spermidine组 | 0.248 ± 0.014### | 0.271 ± 0.003### |
F值 | 53.04 | 25.74 |
P值 | < | < |
Tab.3
The effects of spermidine on DLBCL cells was assessed by Ki67 flow cytometry staining"
组别 | A20(48 h) | OCI?Ly3(48 h) | ||
---|---|---|---|---|
Ki67/% | Ki67(MFI) | Ki67/% | Ki67(MFI) | |
Control组 | 92.274 ± 0.646 | 40 591.600 ± 1 246.350 | 94.050 ± 0.545 | 48 532.250 ± 4 864.604 |
10 μmol/L Spermidine组 | 92.570 ± 0.130 | 42 887.800 ± 1 753.880 | 94.262 ± 0.633 | 52 863.400 ± 3 002.796 |
t值 | 1.004 | 2.386 | 1.495 | 0.144 |
P值 | 0.345 | 0.044 | 0.613 | 0.143 |
Tab.4
The effects of spermidine on DLBCL cells was assessed by PI flow cytometry staining"
组别 | A20(48 h) | OCI-Ly3(48 h) | ||||
---|---|---|---|---|---|---|
G0/G1 | S | G2/M | G0/G1 | S | G2/M | |
Control组 | 60.378 ± 3.048 | 34.152 ± 1.581 | 1.872 ± 1.339 | 66.234 ± 3.087 | 22.088 ± 2.066 | 10.554 ± 0.917 |
10 μmol/L Spermidine组 | 57.884 ± 2.234 | 33.808 ± 1.836 | 3.504 ± 0.867 | 62.994 ± 3.504 | 24.594 ± 2.211 | 11.284 ± 2.418 |
t值 | 1.476 | 0.318 | 2.287 | 1.551 | 1.851 | 0.631 |
P值 | 0.179 | 0.759 | 0.052 | 0.159 | 0.101 | 0.546 |
Tab.5
Grayscale values of cell cycle protein expression in DLBCL cell lines"
组别 | A20(48 h) | OCI?Ly3(48 h) | ||
---|---|---|---|---|
CDK2 | CDK4 | CDK2 | CDK4 | |
Control组 | 1.242 ± 0.432 | 1.583 ± 0.324 | 1.301 ± 0.350 | 1.409 ± 0.414 |
10 μmol/L Spermidine组 | 1.178 ± 0.323 | 1.381 ± 0.269 | 1.283 ± 0.341 | 1.560 ± 0.373 |
t值 | 0.206 | 0.827 | 0.063 | 0.468 |
P值 | 0.847 | 0.455 | 0.953 | 0.665 |
Tab.6
Proportion of apoptotic DLBCL cells after spermidine treatment"
组别 | A20(48 h) | OCI?Ly3(48 h) | ||||
---|---|---|---|---|---|---|
早期凋亡细胞 | 晚期凋亡细胞 | 总凋亡细胞 | 早期凋亡细胞 | 晚期凋亡细胞 | 总凋亡细胞 | |
Control组 | 1.465 ± 0.452 | 2.673 ± 0.859 | 4.138 ± 1.298 | 5.258 ± 0.457 | 3.430 ± 0.510 | 8.688 ± 0.350 |
10 μmol/L Spermidine组 | 40.595 ± 7.130 | 25.643 ± 4.750 | 66.238 ± 11.449 | 16.245 ± 2.856 | 8.245 ± 1.434 | 24.490 ± 1.868 |
t值 | 17.20 | 11.06 | 16.02 | 7.597 | 6.326 | 16.63 |
P值 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
Tab.7
Grayscale values of Caspase protein expression in DLBCL cell lines"
组别 | A20(48 h) | OCI?Ly3(48 h) | ||
---|---|---|---|---|
Caspase?8 | Caspase?9 | Caspase?8 | Caspase?9 | |
Control组 | 1.322 ± 0.225 | 1.583 ± 0.324 | 1.557 ± 0.270 | 1.282 ± 0.536 |
10 μmol/L Spermidine组 | 1.222 ± 0.316 | 2.808 ± 0.448 | 2.956 ± 0.423 | 1.357 ± 0.430 |
t值 | 0.449 | 2.887 | 0.290 | 0.397 |
P值 | 0.677 | < 0.05 | < 0.01 | 0.859 |
Tab.8
Proportion of apoptotic cells in mouse splenocytes and human PBMCs after treatment with spermidine"
组别 | 小鼠脾脏细胞 | 人PBMCs(48 h) | ||||
---|---|---|---|---|---|---|
早期凋亡细胞 | 晚期凋亡细胞 | 总凋亡细胞 | 早期凋亡细胞 | 晚期凋亡细胞 | 总凋亡细胞 | |
Control组 | 15.854 ± 0.527 | 11.640 ± 1.894 | 27.494 ± 2.276 | 6.360 ± 0.671 | 6.534 ± 1.788 | 12.894 ± 2.437 |
10 μmol/L Spermidine组 | 19.112 ± 1.508 | 13.142 ± 3.331 | 32.254 ± 4.686 | 6.840 ± 0.507 | 5.806 ± 0.941 | 12.646 ± 1.401 |
t值 | 5.248 | 3.957 | 9.787 | 1.276 | 0.806 | 0.197 |
P值 | < 0.01 | 0.406 | 0.075 | 0.238 | 0.444 | 0.849 |
1 |
NING N, ZHANG S, WU Q, et al. Inhibition of acylglycerol kinase sensitizes DLBCL to venetoclax via upregulation of FOXO1-mediated BCL-2 expression[J]. Theranostics, 2022, 12(12): 5537-5550. doi:10.7150/thno.72786
doi: 10.7150/thno.72786 |
2 |
YE X, WANG L, NIE M, et al. A single-cell atlas of diffuse large B cell lymphoma[J]. Cell Reports, 2022, 39(3): 110713. doi:10.1016/j.celrep.2022.110713
doi: 10.1016/j.celrep.2022.110713 |
3 | 范丹丹,胡茂贵,丁凯阳,等. 利妥昔单抗联合CHOP 方案治疗在初治弥漫大B细胞淋巴瘤患者中的疗效和安全性[J]. 实用医学杂志, 2023, 39(8): 1022-1028. |
4 |
ZHANG M C, TIAN S, FU D, et al. Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: The randomized GUIDANCE-01 trial[J]. Cancer Cell, 2023, 41(10): 1705-1716.e5. doi:10.1016/j.ccell.2023.09.004
doi: 10.1016/j.ccell.2023.09.004 |
5 |
WESTIN J, SEHN L H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift?[J]. Blood, 2022, 139(18): 2737-2746. doi:10.1182/blood.2022015789
doi: 10.1182/blood.2022015789 |
6 |
MUÑOZ-ESPARZA N C, LATORRE-MORATALLA M L, COMAS-BASTÉ O, et al. Polyamines in Food[J]. Front Nutr, 2019, 6: 108. doi:10.3389/fnut.2019.00108
doi: 10.3389/fnut.2019.00108 |
7 |
CASERO R A JR, MURRAY STEWART T, PEGG A E. Polyamine metabolism and cancer: Treatments, challenges and opportunities[J]. Nat Rev Cancer, 2018, 18(11): 681-695. doi:10.1038/s41568-018-0050-3
doi: 10.1038/s41568-018-0050-3 |
8 |
HOLBERT C E, CULLEN M T, CASERO R A JR, et al. Polyamines in cancer: Integrating organismal metabolism and antitumour immunity[J]. Nat Rev Cancer, 2022, 22(8): 467-480. doi:10.1038/s41568-022-00473-2
doi: 10.1038/s41568-022-00473-2 |
9 |
TSE R T, WONG C Y, CHIU P K, et al. The Potential Role of Spermine and Its Acetylated Derivative in Human Malignancies[J]. Int J Mol Sci, 2022, 23(3):1258. doi:10.3390/ijms23031258
doi: 10.3390/ijms23031258 |
10 |
PIETROCOLA F, POL J, VACCHELLI E, et al. Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance[J]. Cancer Cell, 2016, 30(1): 147-160. doi:10.1016/j.ccell.2016.05.016
doi: 10.1016/j.ccell.2016.05.016 |
11 |
NIEMI R J, ROINE A N, HÄKKINEN M R, et al. Urinary Polyamines as Biomarkers for Ovarian Cancer[J]. Int J Gynecol Cancer, 2017, 27(7): 1360-1366. doi:10.1097/igc.0000000000001031
doi: 10.1097/igc.0000000000001031 |
12 |
TAKAHASHI Y, HORIO H, SAKAGUCHI K, et al. Significant correlation between urinary N1, N12-diacetylspermine and tumor invasiveness in patients with clinical stage IA non-small cell lung cancer[J]. BMC Cancer, 2015, 15(1): 65. doi:10.1186/s12885-015-1068-5
doi: 10.1186/s12885-015-1068-5 |
13 | DURIE B G, SALMON S E, RUSSELL D H. Polyamines as markers of response and disease activity in cancer chemotherapy[J]. Cancer Res, 1977, 37(1): 214-221. |
14 |
PIRNES-KARHU S, JANTUNEN E, MÄNTYMAA P, et al. Spermidine/spermine N1-acetyltransferase activity associates with white blood cell count in myeloid leukemias[J].Exp Hematol, 2014, 42(7): 574-580. doi:10.1016/j.exphem.2014.02.008
doi: 10.1016/j.exphem.2014.02.008 |
15 |
PIRNES-KARHU S, JANTUNEN E, MÄNTYMAA P, et al. Spermidine/spermine N(1)-acetyltransferase activity associates with white blood cell count in myeloid leukemias[J]. Exp Hematol, 2014, 42(7): 574-580. doi:10.1016/j.exphem.2014.02.008
doi: 10.1016/j.exphem.2014.02.008 |
16 |
ARBER D A, ORAZI A, HASSERJIAN R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20): 2391-2405. doi:10.1182/blood-2016-03-643544
doi: 10.1182/blood-2016-03-643544 |
17 | 田祖国,高陆,刘水玉,等. UFC1在弥漫大B细胞淋巴瘤中的表达研究[J]. 实用医学杂志, 2021, 37(3): 324-330. |
18 |
ROSCHEWSKI M, STAUDT L M, WILSON W H. Diffuse large B-cell lymphoma-treatment approaches in the molecular era[J]. Nat Rev Clin Oncol, 2014, 11(1): 12-23. doi:10.1038/nrclinonc.2013.197
doi: 10.1038/nrclinonc.2013.197 |
19 |
COIFFIER B, LEPAGE E, BRIERE J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002, 346(4): 235-242. doi:10.1056/nejmoa011795
doi: 10.1056/nejmoa011795 |
20 |
MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease[J]. Science, 2018, 359(6374):eaan2788. doi:10.1126/science.aan2788
doi: 10.1126/science.aan2788 |
21 |
CASTOLDI F, KROEMER G, PIETROCOLA F. Spermidine rejuvenates T lymphocytes and restores anticancer immunosurveillance in aged mice[J]. Oncoimmunology, 2022, 11(1): 2146855. doi:10.1080/2162402x.2022.2146855
doi: 10.1080/2162402x.2022.2146855 |
22 |
AL-HABSI M, CHAMOTO K, MATSUMOTO K, et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice[J]. Science, 2022, 378(6618): eabj3510. doi:10.1126/science.abj3510
doi: 10.1126/science.abj3510 |
23 |
KAWADA M, SOMENO T, INUMA H, et al. The long-lasting antiproliferative effect of 15-deoxyspergualin through its spermidine moiety[J]. J Antibiot (Tokyo), 2000, 53(7): 705-710. doi:10.7164/antibiotics.53.705
doi: 10.7164/antibiotics.53.705 |
24 |
FORSHELL T P, RIMPI S, NILSSON J A. Chemoprevention of B-cell lymphomas by inhibition of the Myc target spermidine synthase[J]. Cancer Prev Res (Phila), 2010, 3(2): 140-147. doi:10.1158/1940-6207.capr-09-0166
doi: 10.1158/1940-6207.capr-09-0166 |
25 |
SMYTH P, SESSLER T, SCOTT C J, et al. FLIP(L): The pseudo-caspase[J]. FEBS J, 2020, 287(19): 4246-4260. doi:10.1111/febs.15260
doi: 10.1111/febs.15260 |
26 | 王瑞娟,李超,段丽娟,等. 氯普噻吨调节Akt/mTOR通路对人急性髓系白血病细胞自噬和凋亡的影响[J]. 实用医学杂志, 2023, 39(20): 2584-2590. |
27 |
GREEN D R, KROEMER G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684): 626-629. doi:10.1126/science.1099320
doi: 10.1126/science.1099320 |
28 |
AL-MANSOORI L, ELSINGA P, GODA S K. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy[J]. Biomed Pharmacother, 2021, 144: 112260. doi:10.1016/j.biopha.2021.112260
doi: 10.1016/j.biopha.2021.112260 |
[1] | Shan LUO,Ying FENG,Dandan FAN,Wenxin ZHENG,Xingrong GUO,Xuzhi. RUAN. ANGPTL8 knockout reduces lipopolysaccharide⁃induced hepatic lipid deposition [J]. The Journal of Practical Medicine, 2024, 40(9): 1197-1203. |
[2] | Wei HE,Liping LIU,Jingwei ZHUO,Xiaodong ZHANG,Tong YANG,Jubin. FENG. CCR5 blockade reduces tumor growth by inducing apoptosis and impairing immunosuppression of tumor microenvironment [J]. The Journal of Practical Medicine, 2024, 40(9): 1204-1210. |
[3] | Jing LIU,Chuntao LENG,Yan. WANG. Study on the angiogenic ability of exosomes derived from dental pulp stem cells modified by circRNA SIPA1L1 [J]. The Journal of Practical Medicine, 2024, 40(9): 1211-1217. |
[4] | Wenxin LI,Minjun LU,Li LIN,Yueqin LIU,Xiaolan. ZHU. circRAF1 regulates the proliferation and apoptosis of human ovarian granulosa cells [J]. The Journal of Practical Medicine, 2024, 40(7): 910-917. |
[5] | Zhen YANG,Shaoru JIANG,Xiaoyan CHEN,Xiaolin CHEN,Weimin DENG,Xinyu. GUO. Effect of Jinghou Zengzhi Granules on ovarian GDF9 secretion and granulosa cells apoptosis in controlled ovarian hyperstimulation rats [J]. The Journal of Practical Medicine, 2024, 40(7): 918-923. |
[6] | Li XU,Shanshan HU,Haiming. ZHAO. LncRNA GNAS⁃AS1 participates in the proliferation and migration of gastric cancer cells by regulating the miR⁃449a/Notch1 axis [J]. The Journal of Practical Medicine, 2024, 40(4): 483-489. |
[7] | Runwei MA,Chunjie MU,Wenting GUI,Yao DENG,Minzhang ZHAO,Min LIU,Yi SONG. LncRNA SENCR targeted miR⁃206 regulates proliferation and apoptosis of human vascular smooth muscle cells of aortic dissection tissues [J]. The Journal of Practical Medicine, 2024, 40(3): 302-308. |
[8] | Lihong DING,Shijia GENG,Yujie WANG. Effects of wedelobata on apoptosis and secretion of inflammatory cytokines in the alveolar epithelium infected by Streptococcus pneumonia [J]. The Journal of Practical Medicine, 2024, 40(3): 316-320. |
[9] | Qing LUO,Jinjin HUANG,Tingting REN,Ruihua ZHOU,Donghua XU,Zhenhua WANG,Guoying WANG. The effect of umbilical cord stem cell exosomes on the proliferation of dermal papilla cells [J]. The Journal of Practical Medicine, 2024, 40(20): 2828-2834. |
[10] | Chunmei ZHANG,Xinhui HUANG,Jinqiu HU,Xiaoyan BI,Fuli. YA. Sulforaphane protects human platelets from high glucose⁃induced cellular apoptosis through down-regulating PI3K/Akt signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(18): 2530-2536. |
[11] | Rao LÜ,Jiadi YU,Liuzhen LI,Chulan ZHAN,Liyue ZHAO,Yueliang LI,Jun DONG,Jiao. LI. Molecular mechanism of young Sca⁃1 bone marrow stem cell on old cardiac fibroblast cell apoptosis in aging mice [J]. The Journal of Practical Medicine, 2024, 40(17): 2369-2374. |
[12] | Wushuang XIAO,Linjie HONG,Zhen YU,Ping YANG,Jieming ZHANG,Siyang PENG,Xiangyang WEI,Yidong CHEN,Side LIU,Jide. WANG. Expression of S100A7A in gastric cancer and its effect on proliferation and metastasis [J]. The Journal of Practical Medicine, 2024, 40(10): 1344-1350. |
[13] | Xue MA,Shihui. ZHOU. Role and potential mechanisms of p62/SQSTM1 on migration and metastasis of non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2024, 40(1): 13-18. |
[14] |
LI Xiaoping, ZHOU Hongjian, GAO Fangfang, LI Wei..
Tspan1 antagonizes oxaliplatin⁃induced apoptosis in colorectal cancer cells by inducing cellular autophagy [J]. The Journal of Practical Medicine, 2023, 39(9): 1072-1078. |
[15] |
ZHANG Zhuoer, GAO Xiaoya, YU Juan, WANG Yuli..
Experimental study of lncRNA KCNQ1OT1 targeting miR⁃129⁃5p to regulate inflammation and apoptosis in a Parkinson′s disease cell model [J]. The Journal of Practical Medicine, 2023, 39(6): 672-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||