The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (7): 1023-1028.doi: 10.3969/j.issn.1006-5725.2024.07.025
• Reviews • Previous Articles Next Articles
Lulu CHEN1,Meng LUO1,Kaiqi SU2,Jing GAO2,Xiaodong. FENG2()
Received:
2023-10-22
Online:
2024-04-10
Published:
2024-04-08
Contact:
Xiaodong. FENG
E-mail:fxd0502@163.com
CLC Number:
Lulu CHEN,Meng LUO,Kaiqi SU,Jing GAO,Xiaodong. FENG. Research progress of the endoplasmic reticulum⁃mitochondrial interactions in post⁃stroke cognitive impairment[J]. The Journal of Practical Medicine, 2024, 40(7): 1023-1028.
Tab.1
Biological functions of endoplasmic reticulum-mitochondrial interactionsand their associated proteins"
内质网-线粒体 互作的生物学功能 | 相关蛋白 | 具体作用 | 参考文献 |
---|---|---|---|
Ca+运输 | VDAC1 | 线粒体的钙摄取通道 | [ |
IP3R | 内质网的钙释放通道 | ||
Grp75 | 连接线粒体外膜上的VDAC1与内质网上的IP3R,介导两者间的钙转移 | ||
VAPB/PTPIP51 | 连接内质网与线粒体介导两者间的钙转移 | [ | |
Sig-1R | 可延长从内质网到线粒体的Ca2+信号传导 | [ | |
脂质代谢 | PSS | 催化磷脂酰丝氨酸合成的关键酶 | [ |
ACAT1 | 催化游离胆固醇转化为胆固醇酯 | [ | |
线粒体动力学 | OPA1 | 参与线粒体内膜的融合 | [ |
Mfn2 | 参与线粒体外膜的融合 | ||
Drp1 | 线粒体分裂的启动蛋白 | [ | |
Fis1 | 与Drp1协作共同参与线粒体分裂 | ||
自噬 | Beclin1 | 自噬形成的关键蛋白 | [ |
ATG5/9/14 | 调节自噬前体的形成并作为自噬标记物 | [ | |
Stx17 | 与ATG14相互作用,参与自噬小体的形成 | [ | |
PINK1/Parkin | 介导线粒体自噬 | [ | |
炎症 | NLRP3 | 形成多分子NIRP3炎性复合体介导炎症的发生 | [ |
1 | 汪凯,董强. 卒中后认知障碍管理专家共识[J]. 中国卒中杂志, 2021,16(4):376-389. |
2 |
ROST N S, BRODTMANN A, PASE M P, et al. Post-Stroke Cognitive Impairment and Dementia[J]. Circ Res, 2022,130(8):1252-1271. doi:10.1161/circresaha.122.319951
doi: 10.1161/circresaha.122.319951 |
3 |
MIJAJLOVIĆ M D, PAVLOVIĆ A, BRAININ M, et al. Post-stroke dementia - a comprehensive review[J]. BMC Med, 2017,15(1):11. doi:10.1186/s12916-017-0779-7
doi: 10.1186/s12916-017-0779-7 |
4 |
NUNNARI J, SUOMALAINEN A. Mitochondria: in sickness and in health[J]. Cell, 2012,148(6):1145-1159. doi:10.1016/j.cell.2012.02.035
doi: 10.1016/j.cell.2012.02.035 |
5 |
ZHANG P, KONJA D, ZHANG Y, et al. Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis[J]. Cells, 2021,10(9):2195. doi:10.3390/cells10092195
doi: 10.3390/cells10092195 |
6 |
ROWLAND A A, VOELTZ G K. Endoplasmic reticulum-mitochondria contacts: function of the junction[J]. Nat Rev Mol Cell Biol, 2012,13(10):607-625. doi:10.1038/nrm3440
doi: 10.1038/nrm3440 |
7 |
ERPAPAZOGLOU Z, MOUTON-LIGER F, CORTI O. From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration[J]. Neurochem Int, 2017,109:171-183. doi:10.1016/j.neuint.2017.03.021
doi: 10.1016/j.neuint.2017.03.021 |
8 |
LIU J, YANG J. Mitochondria-associated membranes: A hub for neurodegenerative diseases[J]. Biomed Pharmacother, 2022,149:112890. doi:10.1016/j.biopha.2022.112890
doi: 10.1016/j.biopha.2022.112890 |
9 |
SILVA BSC, DIGIOVANNI L, KUMAR R, et al. Maintaining social contacts: The physiological relevance of organelle interactions[J]. Biochim Biophys Acta Mol Cell Res, 2020,1867(11):118800. doi:10.1016/j.bbamcr.2020.118800
doi: 10.1016/j.bbamcr.2020.118800 |
10 |
COPELAND D E, DALTON A J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost[J]. J Biophys Biochem Cytol, 1959,5(3):393-396. doi:10.1083/jcb.5.3.393
doi: 10.1083/jcb.5.3.393 |
11 |
VANCE J E. Phospholipid synthesis in a membrane fraction associated with mitochondria[J]. J Biol Chem, 1990,265(13):7248-7256. doi:10.1016/s0021-9258(19)39106-9
doi: 10.1016/s0021-9258(19)39106-9 |
12 |
POSTON C N, KRISHNAN S C, BAZEMORE-WALKER C R. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM)[J]. J Proteomics, 2013,79:219-230. doi:10.1016/j.jprot.2012.12.018
doi: 10.1016/j.jprot.2012.12.018 |
13 |
MAO H, CHEN W, CHEN L, et al. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases[J]. Biochem Pharmacol, 2022,199:115011. doi:10.1016/j.bcp.2022.115011
doi: 10.1016/j.bcp.2022.115011 |
14 |
LUDHIADCH A, SHARMA R, MURIKI A, et al. Role of Calcium Homeostasis in Ischemic Stroke: A Review[J]. CNS Neurol Disord Drug Targets, 2022,21(1):52-61. doi:10.2174/1871527320666210212141232
doi: 10.2174/1871527320666210212141232 |
15 |
ZHANG Y, MAO X, LIN R, et al. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury[J]. Acupunct Med, 2018,36(6):401-407. doi:10.1136/acupmed-2016-011353
doi: 10.1136/acupmed-2016-011353 |
16 |
HUTCHINS B I, LI L, KALIL K. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum[J]. Sci Signal, 2012,5(206):pt1. doi:10.1126/scisignal.2002523
doi: 10.1126/scisignal.2002523 |
17 |
DE RIDDER I, KERKHOFS M, LEMOS F O, et al. The ER-mitochondria interface, where Ca2+ and cell death meet[J]. Cell Calcium, 2023,112:102743. doi:10.1016/j.ceca.2023.102743
doi: 10.1016/j.ceca.2023.102743 |
18 |
CHANG Y, WANG C, ZHU J, et al. SIRT3 ameliorates diabetes-associated cognitive dysfunction via regulating mitochondria-associated ER membranes[J]. J Transl Med, 2023,21(1):494. doi:10.1186/s12967-023-04246-9
doi: 10.1186/s12967-023-04246-9 |
19 |
SONG L L, QU Y Q, TANG Y P, et al. Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice[J]. Redox Biol, 2023,61:102637. doi:10.1016/j.redox.2023.102637
doi: 10.1016/j.redox.2023.102637 |
20 |
YOON J H, SEO Y, JO Y S, et al. Brain lipidomics: From functional landscape to clinical significance[J]. Sci Adv, 2022,8(37):eadc9317. doi:10.1126/sciadv.adc9317
doi: 10.1126/sciadv.adc9317 |
21 |
SABOGAL-GUÁQUETA A M, VILLAMIL-ORTIZ J G, ARIAS-LONDOÑO J D, et al. Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as Hippocampal Indicator of Postischemic Cognitive Impairment in Rats[J]. Front Neurosci, 2018,12:989. doi:10.3389/fnins.2018.00989
doi: 10.3389/fnins.2018.00989 |
22 |
LIU L W, YUE H Y, ZOU J, et al. Comprehensive metabolomics and lipidomics profiling uncovering neuroprotective effects of Ginkgo biloba L. leaf extract on Alzheimer's disease[J]. Front Pharmacol, 2022,13:1076960. doi:10.3389/fphar.2022.1076960
doi: 10.3389/fphar.2022.1076960 |
23 |
YANG Z, WANG H, EDWARDS D, et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: A systematic review and meta-analysis[J]. Ageing Res Rev, 2020,57:100962. doi:10.1016/j.arr.2019.100962
doi: 10.1016/j.arr.2019.100962 |
24 |
VOELKER D R. Reconstitution of phosphatidylserine import into rat liver mitochondria [J]. J Biol Chem, 1989, 264(14): 8019-8025. doi:10.1016/s0021-9258(18)83144-1
doi: 10.1016/s0021-9258(18)83144-1 |
25 |
HUTTUNEN H J, HAVAS D, PEACH C, et al. The acyl-coenzyme A: cholesterol acyltransferase inhibitor CI-1011 reverses diffuse brain amyloid pathology in aged amyloid precursor protein transgenic mice[J]. J Neuropathol Exp Neurol, 2010,69(8):777-788. doi:10.1097/nen.0b013e3181e77ed9
doi: 10.1097/nen.0b013e3181e77ed9 |
26 |
BRYLEVA E Y, ROGERS M A, CHANG C C, et al. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD[J]. Proc Natl Acad Sci U S A, 2010,107(7):3081-3086. doi:10.1073/pnas.0913828107
doi: 10.1073/pnas.0913828107 |
27 |
YANG J L, MUKDA S, CHEN S D. Diverse roles of mitochondria in ischemic stroke[J]. Redox Biol, 2018,16:263-275. doi:10.1016/j.redox.2018.03.002
doi: 10.1016/j.redox.2018.03.002 |
28 |
LAI Y, LIN P, CHEN M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function[J]. Redox Biol, 2020,34:101503. doi:10.1016/j.redox.2020.101503
doi: 10.1016/j.redox.2020.101503 |
29 |
KANDIMALLA R, MANCZAK M, FRY D, et al. Correction to: Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease[J]. Hum Mol Genet, 2023,32(8):1410-1411. doi:10.1093/hmg/ddac305
doi: 10.1093/hmg/ddac305 |
30 |
ZHANG Y, RUI T, LUO C, LI Q. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice[J]. Exp Brain Res, 2021,239(5):1581-1593. doi:10.1007/s00221-021-06089-6
doi: 10.1007/s00221-021-06089-6 |
31 |
CHENG Y, BUCHAN M, VITANOVA K, et al. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function[J]. J Neurochem, 2020,155(2):191-206. doi:10.1111/jnc.15003
doi: 10.1111/jnc.15003 |
32 |
FRIEDMAN J R, LACKNER L L, WEST M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 2011,334(6054):358-362. doi:10.1126/science.1207385
doi: 10.1126/science.1207385 |
33 |
OUYANG M, ZHANG Q, SHU J, et al. Capsaicin Ameliorates the Loosening of Mitochondria-Associated Endoplasmic Reticulum Membranes and Improves Cognitive Function in Rats With Chronic Cerebral Hypoperfusion[J]. Front Cell Neurosci, 2022,16:822702. doi:10.3389/fncel.2022.822702
doi: 10.3389/fncel.2022.822702 |
34 |
JIANG S, NANDY P, WANG W, et al. Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex[J]. Mol Neurodegener, 2018,13(1):5. doi:10.1096/fasebj.31.1_supplement.659.7
doi: 10.1096/fasebj.31.1_supplement.659.7 |
35 |
LIU B, GAO J M, LI F, et al. Gastrodin Attenuates Bilateral Common Carotid Artery Occlusion-Induced Cognitive Deficits via Regulating Aβ-Related Proteins and Reducing Autophagy and Apoptosis in Rats[J]. Front Pharmacol, 2018,9:405. doi:10.3389/fphar.2018.00405
doi: 10.3389/fphar.2018.00405 |
36 |
SHENG R, LIU X Q, ZHANG L S, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012,8(3):310-325. doi:10.4161/auto.18673
doi: 10.4161/auto.18673 |
37 |
HAMASAKI M, FURUTA N, MATSUDA A, et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013,495(7441):389-393. doi:10.1038/nature11910
doi: 10.1038/nature11910 |
38 |
CHEN L, XIA Y F, SHEN S F, et al. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress[J]. Free Radic Biol Med, 2020,160:319-333. doi:10.1016/j.freeradbiomed.2020.08.010
doi: 10.1016/j.freeradbiomed.2020.08.010 |
39 |
吴静,聂祖琼,尹琬凌. miR-499通过Drp1介导线粒体自噬保护缺氧/复氧心肌细胞[J].实用医学杂志, 2023,39(17):2196-2203. doi:10.3969/j.issn.1006-5725.2023.17.008
doi: 10.3969/j.issn.1006-5725.2023.17.008 |
40 |
ZHAO Z, XIE L, SHI J, et al. Neuroprotective Effect of Zishen Huoxue Decoction treatment on Vascular Dementia by activating PINK1/Parkin mediated Mitophagy in the Hippocampal CA1 Region[J]. J Ethnopharmacol, 2023,319(Pt 1):117172. doi:10.1016/j.jep.2023.117172
doi: 10.1016/j.jep.2023.117172 |
41 |
WANG H, ZHANG S, XIE L, et al. Neuroinflammation and peripheral immunity: Focus on ischemic stroke[J]. Int Immunopharmacol, 2023,120:110332. doi:10.1016/j.intimp.2023.110332
doi: 10.1016/j.intimp.2023.110332 |
42 | 陈虹茹,何川,黄重生,等. 电针联合重复经颅磁刺激对D-半乳糖诱导的阿尔茨海默病样模型大鼠学习记忆能力及神经炎症的影响[J]. 实用医学杂志, 2021,37(12):1534-1538. |
43 |
LI Y Q, CHEN J X, LI Q W, et al. Targeting NLRP3 inflammasome improved the neurogenesis and post-stroke cognition in a mouse model of photothrombotic stroke[J]. Neuroreport, 2020,31(11):806-813. doi:10.1097/wnr.0000000000001489
doi: 10.1097/wnr.0000000000001489 |
44 |
WANG W X, PRAJAPATI P, NELSON P T, et al. The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs[J]. Mol Neurobiol, 2020,57(7):2996-3013. doi:10.1007/s12035-020-01937-y
doi: 10.1007/s12035-020-01937-y |
45 |
SHA R, ZHANG B, HAN X, et al. Electroacupuncture Alleviates Ischemic Brain Injury by Inhibiting the miR-223/NLRP3 Pathway[J]. Med Sci Monit, 2019,25:4723-4733. doi:10.12659/msm.917213
doi: 10.12659/msm.917213 |
[1] | Fangming WANG,Wenxuan SHANG,Jingwen ZHANG,Yingxiao JI,Litao. LI. Research advances on the regulation of microglia polarization by autophagy in ischemic stroke [J]. The Journal of Practical Medicine, 2024, 40(9): 1324-1330. |
[2] | Ying ZHOU,Dajun JIANG,Yong TIAN,Yongxiang GU,Guohui. YANG. Inhibition of TRAF6 ameliorates myocardial inflammatory injury and cardiac dysfunction via regulating cardiomyocyte inflammation in sepsis mice [J]. The Journal of Practical Medicine, 2024, 40(5): 608-614. |
[3] | Sha LI,Chun′ai CUI. Progress in targeted research of forkhead box protein O3a in degenerative disease [J]. The Journal of Practical Medicine, 2024, 40(3): 423-427. |
[4] | Liangwen SUN,Chunxia WEI,Miao LIU,Min LU,Shaojun GAO,Bo WANG,Qiang DUAN,Wei LI,Xiaoqun HUANG. Effects of whole body vibration training combined with blood flow restriction on motor function and community activity in elderly stroke patients with hemiplegia [J]. The Journal of Practical Medicine, 2024, 40(20): 2874-2879. |
[5] | Jiarui ZHAO,Yulai GONG. Effectiveness of resting-state fMRI in the diagnosis of temporal lobe epilepsy-associated cognitive impairment: A review of literature [J]. The Journal of Practical Medicine, 2024, 40(20): 2954-2959. |
[6] | Jiawu FU,Hao WU,Zhimin LIAO,Jing CHEN,Junliang. LI. Association between miRNA-146a gene polymorphisms and ischemic post-stroke depression [J]. The Journal of Practical Medicine, 2024, 40(19): 2708-2712. |
[7] | Baozhu ZHAO,Zhengming DU,Xiuxiu. CHEN. Effect of citicoline sodium combined with Eurekline on the expression of miR⁃17⁃5p and miR⁃29b in patients with ischemic stroke [J]. The Journal of Practical Medicine, 2024, 40(19): 2733-2737. |
[8] | Yan LI,Xianlong XIE,Mengli ZHU,Qing. SU. Clinical value of serum VILIP⁃1 and Hepc25 in predicting prognosis of patients with acute ischemic stroke after intravenous thrombolysis [J]. The Journal of Practical Medicine, 2024, 40(17): 2425-2429. |
[9] | Xin HUANG,Pu ZHANG,Yu GAO,Kai CHEN,Xiaofeng LI,Huiyang GU,Xue. LIANG. Multivariate analysis and prediction model of mild cognitive impairment in patients with atrial fibrillation and diabetes mellitus [J]. The Journal of Practical Medicine, 2024, 40(16): 2236-2243. |
[10] | Yong YANG,Renjun CHEN,Jianling GE,Wei. WANG. The protective effect of dexmedetomidine on sevoflurane⁃induced cognitive impairment based on the Wnt/β⁃catenin signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(15): 2063-2068. |
[11] | Luoyi DENG,Yan CHEN,Ni ZENG,Pu HUANG,Xing ZHANG,Kangjie HU,Peng ZHENG,Shuang. WU. Effect of contralesional cerebellar iTBS combined with routine rehabilitation on lower limb walking function in stroke patients [J]. The Journal of Practical Medicine, 2024, 40(13): 1797-1802. |
[12] | Sumei YU,Yuyue ZHANG,Liwen MA,Yuanjun KUANG,Qingning CHANG,Min KONG,ZHANG Huiping ZHANGx. Effect of miR⁃15a⁃5p on autophagy of placental trophoblasts in preeclampsia [J]. The Journal of Practical Medicine, 2024, 40(12): 1631-1636. |
[13] | Chunling PAN,Xueli YI,Li SU,Shengshan YUAN,Guijiang WEI. Research progress of circrna and atherosclerotic ischemic stroke [J]. The Journal of Practical Medicine, 2024, 40(12): 1755-1761. |
[14] | Juan LIU,Yanjie LI,Hewei QIN,Luyao MA,Nannan ZHAO,Huimin. DING. Mechanism of action of dysregulated mitochondrial quality control system mediating Parkinson′s disease [J]. The Journal of Practical Medicine, 2024, 40(11): 1479-1482. |
[15] | Yawei GU,Xu CHU,Lujing ZHAO,Bo HONG,Zhikuan LUO,Zhanzeng LIN,Jingzhen GAO,Yinhua DONG,Lijun WANG,Nian. CHEN. Thrombolysis with low⁃dose and standard⁃dose intravenous recombinant tissue plasminogen activator in elderly patients with acute ischemic stroke: a stratified analysis [J]. The Journal of Practical Medicine, 2024, 40(11): 1568-1573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||