The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (7): 1079-1083.doi: 10.3969/j.issn.1006-5725.2025.07.022
• Reviews • Previous Articles Next Articles
Bangrong XU,Zhenghua JIANG,Xin CHEN,Jun CHEN,Haibo LUO,Daoming LIANG()
Received:
2024-11-18
Online:
2025-04-10
Published:
2025-04-23
Contact:
Daoming LIANG
E-mail:daomingliangkm@163.com
CLC Number:
Bangrong XU,Zhenghua JIANG,Xin CHEN,Jun CHEN,Haibo LUO,Daoming LIANG. The role and research progress of miRNA in intestinal mucosal barrier function[J]. The Journal of Practical Medicine, 2025, 41(7): 1079-1083.
Tab.1
Research progress of miRNA in intestinal mucosal barrier"
miRNA类型 | 作用方式 | 作用结果 | 疾病类型 | 作用靶点 | 信号通路 | 参考文献 |
---|---|---|---|---|---|---|
miR-429 | 下调 | ↑ | 结肠炎 | / | AhR-miR-429 | [ |
miR-218a-5p | 上调 | ↑ | 急性胰腺炎 | / | Notch1 and RhoA/ROCK | [ |
miR-155 | 下调 | ↑ | 酒精性肝炎 | / | miRNA-155/SOCS 1/NF-κB | [ |
miR-211-5p | 下调 | ↑ | 功能性消化不良 | / | NEAT1/miR-211-5p/GDNF | [ |
miR-34a | 下调 | ↑ | 动脉粥样硬化患者肠黏膜屏障功能 | / | miR-34a/KLF4/NF-κB/tight unction protein | [ |
miR-221/222 | 下调 | ↑ | 反射性肠炎 | / | P65-miR-221/222-Sdc1 | [ |
miR-99a | 上调 | ↑ | 重症急性胰腺炎 | NOX4 | / | [ |
miR-145-5p | 上调 | ↑ | 克罗恩病 | SOX9/CLDN8 | miR-145-5p/SOX 9/CLDN 8 | [ |
miR-495 | 上调 | ↑ | 溃疡性结肠炎 | STAT3 | JAK/STAT3 | [ |
miR-155 | 下调 | ↑ | 大肠癌 | / | TLR 4/NF-κB | [ |
miR-200 | 上调 | ↓ | 非酒精性脂肪肝/肠黏膜屏障功能障碍 | SIRT1 | microRNA-200 and the MAPK | [ |
miR-103a-3p | 上调 | ↑ | 结肠炎 | BRD4 | Wnt/β-catenin | [ |
miR-181c | 下调 | ↓ | 肠黏膜屏障 | TNF-α | microRNA-181c/TNF-α/tight junction protein | [ |
miR-320 | 上调 | ↑ | 结肠炎相关性结直肠癌 | IL-6R | IL-6R/STAT3 | [ |
miR-155 | 下调 | ↓ | 脑损伤后的肠黏膜屏障功能 | claudin 1 | / | [ |
miR-320 | 上调 | ↑ | 烧伤后肠黏膜屏障功能 | PTEN | Akt/Bad/Caspase | [ |
miR-31-5p | 下调 | ↑ | 结肠炎 | / | AMPK/SIRT 1/NLRP 3 | [ |
miR-146b-5p | 下调 | ↑ | 克罗恩病 | / | MALAT1-miR146b-5p-CLDN11/NUMB | [ |
miR-124-3p | 上调 | ↓ | 老年性结肠炎 | T-synthase | miR-124-3p/T-synthase/O-glycans | [ |
miR-126 | 下调 | ↓ | 炎症性肠病 | S1PR 2 | PI3K/AKT | [ |
miR-182-5p | 下调 | ↑ | 溃疡性结肠炎 | claudin-2 | / | [ |
miR-3061 | 下调 | ↓ | 糖尿病所致脓毒症肠损伤 | Snail 1 | / | [ |
miR-29a | 下调 | ↑ | 腹泻型肠易激综合征 | / | / | [ |
1 |
BARTEL D P. MicroRNAs: Target Recognition and Regulatory Functions [J]. Cell, 2009, 136(2): 215-233. doi:10.1016/j.cell.2009.01.002
doi: 10.1016/j.cell.2009.01.002 |
2 |
CARTHEW R W, SONTHEIMER E J. Origins and Mechanisms of miRNAs and siRNAs [J]. Cell, 2009, 136(4): 642-655. doi:10.1016/j.cell.2009.01.035
doi: 10.1016/j.cell.2009.01.035 |
3 |
MCKEEVER P M, SCHNEIDER R, TAGHDIRI F, et al. MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer′s Disease [J]. Mol Neurobiol, 2018, 55(12): 8826-8841. doi:10.1007/s12035-018-1032-x
doi: 10.1007/s12035-018-1032-x |
4 |
DONG H, LEI J, DING L, et al. MicroRNA: Function, Detection, and Bioanalysis [J]. Chem Rev, 2013, 113(8): 6207-6233. doi:10.1021/cr300362f
doi: 10.1021/cr300362f |
5 |
HA M, KIM V N. Regulation of microRNA biogenesis [J]. Nat Rev Mol Cell Biol, 2014, 15(8): 509-524. doi:10.1038/nrm3838
doi: 10.1038/nrm3838 |
6 |
SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2018, 234(5): 5451-5465. doi:10.1002/jcp.27486
doi: 10.1002/jcp.27486 |
7 |
WANG H, CHAO K, NG S C, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease [J]. Genome Biol, 2016, 17:58. doi:10.1186/s13059-016-0901-8
doi: 10.1186/s13059-016-0901-8 |
8 |
MOWAT A M. Anatomical basis of tolerance and immunity to intestinal antigens [J]. Nat Rev Immunol, 2003, 3(4): 331-341. doi:10.1038/nri1057
doi: 10.1038/nri1057 |
9 |
SÁNCHEZ DE MEDINA F, ROMERO-CALVO I, MASCARAQUE C, et al. Intestinal Inflammation and Mucosal Barrier Function [J]. Inflamm Bowel Dis, 2014, 20(12): 2394-2404. doi:10.1097/mib.0000000000000204
doi: 10.1097/mib.0000000000000204 |
10 |
KURASHIMA Y, KIYONO H. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing [J]. Annu Rev Immunol, 2017, 35(1): 119-147. doi:10.1146/annurev-immunol-051116-052424
doi: 10.1146/annurev-immunol-051116-052424 |
11 |
TURNER J R. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809. doi:10.1038/nri2653
doi: 10.1038/nri2653 |
12 |
NALLE S C, TURNER J R. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease [J]. Mucosal Immunol, 2015, 8(4): 720-730. doi:10.1038/mi.2015.40
doi: 10.1038/mi.2015.40 |
13 |
PETERSON L W, ARTIS D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis [J]. Nat Rev Immunol, 2014, 14(3): 141-153. doi:10.1038/nri3608
doi: 10.1038/nri3608 |
14 |
ODENWALD M A, TURNER J R. The intestinal epithelial barrier: A therapeutic target?[J]. Nat Rev Gastroenterol Hepatoly, 2017, 14(1): 9-21. doi:10.1038/nrgastro.2016.169
doi: 10.1038/nrgastro.2016.169 |
15 |
KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay [J]. Nat Rev Genet, 2010, 11(9): 597-610. doi:10.1038/nrg2843
doi: 10.1038/nrg2843 |
16 |
MCKENNA L B, SCHUG J, VOUREKAS A, et al. MicroRNAs Control Intestinal Epithelial Differentiation, Architecture, and Barrier Function [J]. Gastroenterology, 2010, 139(5): 1654-1664.e1. doi:10.1053/j.gastro.2010.07.040
doi: 10.1053/j.gastro.2010.07.040 |
17 |
ZOU T, RAO J N, LIU L, et al. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells [J]. Am J Physiol Cell Physiol, 2015, 308(10): C813-24. doi:10.1152/ajpcell.00027.2015
doi: 10.1152/ajpcell.00027.2015 |
18 |
GOTO Y, KIYONO H. Epithelial cell microRNAs in gut immunity [J]. Nat Immunol, 2011, 12(3): 195-197. doi:10.1038/ni0311-195
doi: 10.1038/ni0311-195 |
19 |
WU F, ZHANG S, DASSOPOULOS T, et al. Identification of microRNAs associated with ileal and colonic Crohn′s disease [J]. Inflamm Bowel Dis, 2010, 16(10): 1729-1738. doi:10.1002/ibd.21267
doi: 10.1002/ibd.21267 |
20 |
WU F, ZIKUSOKA M, TRINDADE A, et al. MicroRNAs Are Differentially Expressed in Ulcerative Colitis and Alter Expression of Macrophage Inflammatory Peptide-2α [J]. Gastroenterology, 2008, 135(5): 1624-1635.e24. doi:10.1053/j.gastro.2008.07.068
doi: 10.1053/j.gastro.2008.07.068 |
21 |
MERGA Y, CAMPBELL B J, RHODES J M. Mucosal Barrier, Bacteria and Inflammatory Bowel Disease: Possibilities for Therapy [J]. Dig Dis, 2014, 32(4): 475-483. doi:10.1159/000358156
doi: 10.1159/000358156 |
22 |
CAMILLERI M. Leaky gut: Mechanisms, measurement and clinical implications in humans [J]. Gut, 2019, 68(8): 1516-1526. doi:10.1136/gutjnl-2019-318427
doi: 10.1136/gutjnl-2019-318427 |
23 |
HEINEMANN U, SCHUETZ A. Structural Features of Tight-Junction Proteins [J]. Int J Mol Sci, 2019, 20(23):6020. doi:10.3390/ijms20236020
doi: 10.3390/ijms20236020 |
24 |
YANG H, RAO J N, WANG J Y. Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs [J]. Tissue Barriers, 2014, 2(1):e28320. doi:10.4161/tisb.28320
doi: 10.4161/tisb.28320 |
25 |
CHU Y, ZHU Y, ZHANG Y, et al. Tetrandrine attenuates intestinal epithelial barrier defects caused by colitis through promoting the expression of Occludin via the AhR‐miR‐429 pathway [J]. FASEB J, 2021, 35(5):e21502. doi:10.1096/fj.202002086rr
doi: 10.1096/fj.202002086rr |
26 |
TAN Y, ZHANG W, WU H Y, et al. Effects of emodin on intestinal mucosal barrier by the upregulation of miR-218a-5p expression in rats with acute necrotizing pancreatitis [J]. Int J Immunopathol Pharmacol, 2020, 34:2058738420941765. doi:10.1177/2058738420941765
doi: 10.1177/2058738420941765 |
27 |
ZHONG W, CHEN J, XU G, et al. Kaempferol Ameliorated Alcoholic Hepatitis through Improving Intestinal Barrier Function by Targeting miRNA-155 Signaling [J]. Pharmacology, 2024, 109(3): 138-146. doi:10.1159/000537964
doi: 10.1159/000537964 |
28 |
WANG J, GU S, QIN B. Eosinophil and mast cell‐derived exosomes promote integrity of intestinal mucosa via the NEAT1/miR‐211‐5p/glial cell line‐derived neurotrophic factor axis in duodenum [J]. Environ Toxicol, 2023, 38(11): 2595-2607. doi:10.1002/tox.23895
doi: 10.1002/tox.23895 |
29 |
NIE H Z R, ZHOU Y W, YU X H, et al. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability [J]. Acta Pharmacol Sin, 2024, 45(6): 1189-1200. doi:10.1038/s41401-024-01238-3
doi: 10.1038/s41401-024-01238-3 |
30 |
WANG Z, WANG Q, GONG L, et al. The NF-κB-Regulated miR-221/222/Syndecan-1 Axis and Intestinal Mucosal Barrier Function in Radiation Enteritis [J]. Int J Radiat Oncol Biol Phys, 2022, 113(1): 166-176. doi:10.1016/j.ijrobp.2022.01.006
doi: 10.1016/j.ijrobp.2022.01.006 |
31 |
ZHANG Y, SHAO F, GUAN Z, et al. Overexpression of miR-99a Alleviates Intestinal Mucosal Barrier Injury in Rats with Severe Acute Pancreatitis [J]. J Interferon Cytokine Res, 2021, 41(2): 72-80. doi:10.1089/jir.2020.0085
doi: 10.1089/jir.2020.0085 |
32 |
ZHUANG X, CHEN B, HUANG S, et al. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease [J]. EBioMedicine, 2022, 76:103846. doi:10.1016/j.ebiom.2022.103846
doi: 10.1016/j.ebiom.2022.103846 |
33 |
CHU X Q, WANG J, CHEN G X, et al. Overexpression of microRNA-495 improves the intestinal mucosal barrier function by targeting STAT3 via inhibition of the JAK/STAT3 signaling pathway in a mouse model of ulcerative colitis [J]. Pathol Res Pract, 2018, 214(1): 151-162. doi:10.1016/j.prp.2017.10.003
doi: 10.1016/j.prp.2017.10.003 |
34 |
GAO Y, HAN T, HAN C, et al. Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier [J]. Inflammation, 2021, 44(5): 2078-2090. doi:10.1007/s10753-021-01485-0
doi: 10.1007/s10753-021-01485-0 |
35 |
ZHAO X, CUI D, YUAN W, et al. Berberine represses Wnt/β- catenin pathway activation via modulating the microRNA-103a-3p/Bromodomain-containing protein 4 axis, thereby refraining pyroptosis and reducing the intestinal mucosal barrier defect induced via colitis [J]. Bioengineered, 2022, 13(3): 7392-7409. doi:10.1080/21655979.2022.2047405
doi: 10.1080/21655979.2022.2047405 |
36 |
WU M Y, LUO Y X, JIA W X, et al. miRNA-320 inhibits colitis-associated colorectal cancer by regulating the IL-6R/STAT3 pathway in mice [J]. J Gastrointest Oncol, 2022, 13(2): 695-709. doi:10.21037/jgo-22-237
doi: 10.21037/jgo-22-237 |
37 |
KE J, BIAN X, LIU H, et al. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression [J]. Mol Med, 2019, 25(1):54. doi:10.1186/s10020-019-0122-1
doi: 10.1186/s10020-019-0122-1 |
38 |
YUAN Y, DENG S, YANG J, et al. Antagomir of miR-31-5p modulates macrophage polarization via the AMPK/SIRT1/NLRP3 signaling pathway to protect against DSS-induced colitis in mice [J]. Aging, 2024, 16(6): 5336-5353. doi:10.18632/aging.205651
doi: 10.18632/aging.205651 |
39 |
LI Y, ZHU L, CHEN P, et al. MALAT1 Maintains the Intestinal Mucosal Homeostasis in Crohn′s Disease via the miR-146b-5p-CLDN11/NUMB Pathway [J]. J Crohns Colitis, 2021, 15(9): 1542-1557. doi:10.1093/ecco-jcc/jjab040
doi: 10.1093/ecco-jcc/jjab040 |
40 |
TANG S, GUO W, KANG L, et al. MiRNA-182-5p aggravates experimental ulcerative colitis via sponging Claudin-2 [J]. J Mol Histol, 2021, 52(6): 1215-1224. doi:10.1007/s10735-021-10021-1
doi: 10.1007/s10735-021-10021-1 |
41 |
ZHU H, XIAO X, SHI Y, et al. Inhibition of miRNA‑29a regulates intestinal barrier function in diarrhea‑predominant irritable bowel syndrome by upregulating ZO‑1 and CLDN1 [J]. Exp Ther Med, 2020, 20(6):155. doi:10.3892/etm.2020.9284
doi: 10.3892/etm.2020.9284 |
42 |
WANG Y, ZENG Z, GUAN L, et al. GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway [J]. J Cell Mol Med, 2020, 24(11): 6107-6119. doi:10.1111/jcmm.15212
doi: 10.1111/jcmm.15212 |
43 |
SHEN S, ZHAO J, DAI Y, et al. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/TNF-α/tight junction axis[J]. Toxicol Lett, 2020, 321: 73-82. doi:10.1016/j.toxlet.2019.12.020
doi: 10.1016/j.toxlet.2019.12.020 |
44 |
PAN P, BAI L, HUA X, et al. miR-155 Regulates claudin1 Expression in Humans With Intestinal Mucosa Dysfunction After Brain Injury[J]. Transplant Proc, 2019, 51(10): 3474-3480. doi:10.1016/j.transproceed.2019.08.042
doi: 10.1016/j.transproceed.2019.08.042 |
45 |
HUANG L, SUN T Y, HU L J, et al. Elevated miR‐124‐3p in the aging colon disrupts mucus barrier and increases susceptibility to colitis by targeting T‐synthase[J]. Aging Cell, 2020, 19(11):e13252. doi:10.1111/acel.13252
doi: 10.1111/acel.13252 |
46 |
CHEN T, XUE H, LIN R, et al. MiR-126 impairs the intestinal barrier function via inhibiting S1PR2 mediated activation of PI3K/AKT signaling pathway[J]. Biochem Biophys Res Commun, 2017, 494(3/4): 427-432. doi:10.1016/j.bbrc.2017.03.043
doi: 10.1016/j.bbrc.2017.03.043 |
47 |
TAN F, CAO Y, ZHENG L, et al. Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling[J]. Front Immunol, 2022, 13:922614. doi:10.3389/fimmu.2022.922614
doi: 10.3389/fimmu.2022.922614 |
[1] | Zhiwei GUAN,Qiong ZHAO,Jianli QIU,Yan XU,Qinwan HUANG,Hongyun ZHOU,Junqi ZHAO,Yinghui WU. Exploring the effect of modified Renshen Wumei Decoction on intestinal mucosal barrier in diarrhea rats based on TLR4/MyD88/pNF⁃κBp65 signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(7): 944-952. |
[2] | Wenchi ZENG,Yuanli ZHANG,Mingdi CHEN,Hongyu DONG,Jinzhao. BAI. Carbapenem antibiotics combined with haemofiltration in patients with septic shock and the effect on serum lncRNA XIST and miRNA⁃130a [J]. The Journal of Practical Medicine, 2025, 41(6): 866-871. |
[3] | Jiawu FU,Hao WU,Zhimin LIAO,Jing CHEN,Junliang. LI. Association between miRNA-146a gene polymorphisms and ischemic post-stroke depression [J]. The Journal of Practical Medicine, 2024, 40(19): 2708-2712. |
[4] |
HAO Jian, HAN Lei..
Diagnostic value of single and combined panel of serum exosomal microRNAs in colorectal cancer [J]. The Journal of Practical Medicine, 2023, 39(3): 364-373. |
[5] | Xiangbing JIANG,Lifei WANG,Chunlin WU,Feng LI,Donghua WANG,Xuemei. GAO. Values of serum HE4 combined with exosome miRNA-200a/200b/200c in the early diagnosis of CA125 negative ovarian epithelial carcinoma [J]. The Journal of Practical Medicine, 2023, 39(19): 2541-2545. |
[6] |
ZENG Jiaxing, TIAN Jingjing, LU Wei, HUANG Rui, CHEN Junhao, ZHANG Lin, XIE Xueqing, ZHANG Yuanling, DING Jie..
Value of fecal miRNA as a biomarker in diagnosis and prognostic assessment of colorectal cancer [J]. The Journal of Practical Medicine, 2022, 38(8): 1027-1031. |
[7] |
WANG Wentao, GUO Jian, XIE min, ZHENG Zhifang, WANG Yan..
MicroRNA targeting pancreatic islet regeneration source protein 3A(REG3A)on the proliferation andapoptosis of lung epithelial cells [J]. The Journal of Practical Medicine, 2022, 38(4): 439-445. |
[8] |
ZHAO Peiyuan, CHEN Sha⁃ oyun, LIU Xihong..
Interplay of lncRNA and miRNA on development of central nervous system
[J]. The Journal of Practical Medicine, 2022, 38(18): 2373-2376.
|
[9] |
ZHANG Xueting, HAN Xinyuan, WANG Xuanqi, YAO Xiao, ZHOU Nan..
Effect of troxerutin cerebroprotein hydrolysate combined with high frequency electrotherapy on the expres⁃ sion of miR⁃137 and miR⁃155 in serum of patients with ischemic stroke [J]. The Journal of Practical Medicine, 2022, 38(12): 1517-1521. |
[10] |
LIU Xingyou, CHEN Xinhao, HUANG Yinxia, LI Min, SA Yalian, HE Jigang..
Exosome secreted by bone marrow mesenchymal stem cells overexpressing IDO regulating DC and T Cells through different molecular axes [J]. The Journal of Practical Medicine, 2022, 38(1): 26-37. |
[11] |
LI Song, DONG Lili, SUN Li, LI Gang, YUAN Shuang, WANG Xuebo, WANG Ke.
Effect of MicroRNA⁃191 on proliferation and invasion of endometrial cancer cells through targeted regula⁃ tion of TET1 [J]. The Journal of Practical Medicine, 2021, 37(8): 1014-1018. |
[12] |
WANG Yi′ na, ZOU Yinping, ZHENG Yi, TAN Hongxi, LIN Liekun, YANG Juhong.
Advances in viral infection ⁃ related glycolysis
#br#
[J]. The Journal of Practical Medicine, 2021, 37(5): 686-691.
|
[13] | CHEN Xiyan, MA Yanjuan, NIU Lidan, YANG Yaqin, YANG Feiyun, SHI Jin⁃he.. Effects of miRNA⁃155 on Notch signaling pathway and autophagy and apoptosis of myocardial cells in oxy⁃ gen⁃glucose deprivation model [J]. The Journal of Practical Medicine, 2021, 37(3): 304-307. |
[14] |
WU Wensong, LIU Chao, SUN Chengyuan, ZENG Zhaomu, WEN Xichao, ZHENG Kebin.
Research progress of circRNA in glioma [J]. The Journal of Practical Medicine, 2021, 37(18): 2317-2321. |
[15] |
LI Junjie, SHAO Jianlin. .
The role of long non⁃coding RNAs⁃miRNAs⁃mRNAs regulatory axis in cerebral ischemia/reperfusion inju⁃ ry:A literature review [J]. The Journal of Practical Medicine, 2021, 37(12): 1631-1635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||