The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (1): 1-6.doi: 10.3969/j.issn.1006-5725.2025.01.001
• Clinical Advances •
Jiahui WANG,Ke ZHENG(),Xuemei LI
Received:
2024-06-05
Online:
2025-01-10
Published:
2025-01-14
Contact:
Ke ZHENG
E-mail:kellyz_0_67@163.com
CLC Number:
Jiahui WANG,Ke ZHENG,Xuemei LI. Applications and advances of lipidomics in kidney disease[J]. The Journal of Practical Medicine, 2025, 41(1): 1-6.
1 |
FAHY E, SUBRAMANIAM S, BROWN H A, et al. A comprehensive classification system for lipids [J]. J Lipid Res, 2005, 46(5): 839-861. doi:10.1194/jlr.e400004-jlr200
doi: 10.1194/jlr.e400004-jlr200 |
2 |
XU J, HUANG X. Lipid Metabolism at Membrane Contacts: Dynamics and Functions Beyond Lipid Homeostasis [J]. Front Cell Dev Biol, 2020, 8: 615856. doi:10.3389/fcell.2020.615856
doi: 10.3389/fcell.2020.615856 |
3 |
YOON J H, SEO Y, JO Y S, et al. Brain lipidomics: From functional landscape to clinical significance [J]. Sci Adv, 2022, 8(37): eadc9317. doi:10.1126/sciadv.adc9317
doi: 10.1126/sciadv.adc9317 |
4 |
SABBAGH M N, POPE E, CORDES L, et al. Therapeutic considerations for APOE and TOMM40 in Alzheimers disease: A tribute to Allen Roses MD [J]. Expert Opin Investig Drugs, 2021, 30(1): 39-44. doi:10.1080/13543784.2021.1849138
doi: 10.1080/13543784.2021.1849138 |
5 |
HANRIEDER J. Lipid imaging of Alzheimer's disease pathology [J]. J Neurochem, 2024,168(7):1175-1178. doi:10.1111/jnc.16079
doi: 10.1111/jnc.16079 |
6 |
SKRHA J JR. Diabetes, Lipids, and CV Risk [J]. Curr Atheroscler Rep, 2021, 23(3): 8. doi:10.1007/s11883-021-00905-8
doi: 10.1007/s11883-021-00905-8 |
7 |
CHAKRAVARTI B, AKHTAR SIDDIQUI J, ANTHONY SINHA R, et al. Targeting autophagy and lipid metabolism in cancer stem cells [J]. Biochem Pharmacol, 2023, 212: 115550. doi:10.1016/j.bcp.2023.115550
doi: 10.1016/j.bcp.2023.115550 |
8 |
FERENCE B A, GRAHAM I, TOKGOZOGLU L, et al. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series [J]. J Am Coll Cardiol, 2018, 72(10): 1141-1156. doi:10.1016/j.jacc.2018.06.046
doi: 10.1016/j.jacc.2018.06.046 |
9 |
FALABELLA M, VERNON H J, HANNA M G, et al. Cardiolipin, Mitochondria, and Neurological Disease [J]. Trends Endocrinol Metab, 2021, 32(4): 224-237. doi:10.1016/j.tem.2021.01.006
doi: 10.1016/j.tem.2021.01.006 |
10 |
CHEN W, WANG Q, ZHOU B, et al. Lipid Metabolism Profiles in Rheumatic Diseases [J]. Front Pharmacol, 2021, 12: 643520. doi:10.3389/fphar.2021.643520
doi: 10.3389/fphar.2021.643520 |
11 |
BREIDEN B, SANDHOFF K. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease [J]. Int J Mol Sci, 2020, 21(7):2566. doi:10.3390/ijms21072566
doi: 10.3390/ijms21072566 |
12 |
KISHIMOTO K, URADE R, OGAWA T, et al. Nondestructive quantification of neutral lipids by thin-layer chromatography and laser-fluorescent scanning: Suitable methods for "lipidome" analysis [J]. Biochem Biophys Res Commun, 2001, 281(3): 657-662. doi:10.1006/bbrc.2001.4404
doi: 10.1006/bbrc.2001.4404 |
13 |
AVELA H F, SIREN H. Advances in lipidomics [J]. Clin Chim Acta, 2020, 510: 123-141. doi:10.1016/j.cca.2020.06.049
doi: 10.1016/j.cca.2020.06.049 |
14 |
LU J, LAM S M, WAN Q, et al. High-Coverage Targeted Lipidomics Reveals Novel Serum Lipid Predictors and Lipid Pathway Dysregulation Antecedent to Type 2 Diabetes Onset in Normoglycemic Chinese Adults [J]. Diabetes Care, 2019, 42(11): 2117-2126. doi:10.2337/dc19-0100
doi: 10.2337/dc19-0100 |
15 |
UMANATH K, LEWIS J B. Update on Diabetic Nephropathy: Core Curriculum 2018 [J]. Am J Kidney Dis, 2018, 71(6): 884-895. doi:10.1053/j.ajkd.2017.10.026
doi: 10.1053/j.ajkd.2017.10.026 |
16 |
TOFTE N, SUVITAIVAL T, AHONEN L, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes [J]. Sci Rep, 2019, 9(1): 16398. doi:10.1038/s41598-019-52916-w
doi: 10.1038/s41598-019-52916-w |
17 |
AFSHINNIA F, RAJENDIRAN T M, HE C, et al. Circulating Free Fatty Acid and Phospholipid Signature Predicts Early Rapid Kidney Function Decline in Patients With Type 1 Diabetes [J]. Diabetes Care, 2021, 44(9): 2098-2106. doi:10.2337/dc21-0737
doi: 10.2337/dc21-0737 |
18 |
WANG W, LI T, LI Z, et al. Differential lipidomics of HK-2 cells and exosomes under high glucose stimulation [J]. Int J Med Sci, 2022, 19(2): 393-401. doi:10.7150/ijms.67326
doi: 10.7150/ijms.67326 |
19 |
YOSHIOKA K, HIRAKAWA Y, KURANO M, et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease [J]. Kidney Int, 2022, 101(3): 510-526. doi:10.1016/j.kint.2021.10.039
doi: 10.1016/j.kint.2021.10.039 |
20 |
HOU B, HE P, MA P, et al. Comprehensive Lipidome Profiling of the Kidney in Early-Stage Diabetic Nephropathy [J]. Front Endocrinol (Lausanne), 2020, 11: 359. doi:10.3389/fendo.2020.00359
doi: 10.3389/fendo.2020.00359 |
21 |
HAO Y, FAN Y, FENG J, et al. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease [J]. Cell Commun Signal, 2024, 22(1): 26. doi:10.1186/s12964-023-01399-4
doi: 10.1186/s12964-023-01399-4 |
22 |
YEUNG M H Y, LEUNG K L, CHOI L Y, et al. Lipidomic Analysis Reveals the Protection Mechanism of GLP-1 Analogue Dulaglutide on High-Fat Diet-Induced Chronic Kidney Disease in Mice [J]. Front Pharmacol, 2021, 12: 777395. doi:10.3389/fphar.2021.777395
doi: 10.3389/fphar.2021.777395 |
23 |
PEREZ-MARTI A, RAMAKRISHNAN S, LI J, et al. Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes [J]. Elife, 2022, 11:e74391. doi:10.7554/elife.74391.sa0
doi: 10.7554/elife.74391.sa0 |
24 |
ELWAKIEL A, MATHEW A, ISERMANN B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease [J]. Cardiovasc Res, 2024, 119(18): 2875-2883. doi:10.1093/cvr/cvad190
doi: 10.1093/cvr/cvad190 |
25 |
KOVESDY C P. Epidemiology of chronic kidney disease: an update 2022 [J]. Kidney Int Suppl (2011), 2022, 12(1): 7-11. doi:10.1016/j.kisu.2021.11.003
doi: 10.1016/j.kisu.2021.11.003 |
26 |
AFSHINNIA F, RAJENDIRAN T M, KARNOVSKY A, et al. Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency Cohort [J]. Kidney Int Rep, 2016, 1(4): 256-268. doi:10.1016/j.ekir.2016.08.007
doi: 10.1016/j.ekir.2016.08.007 |
27 |
LLUESA J H, LOPEZ-ROMERO L C, MONZO J J B, et al. Lipidic profiles of patients starting peritoneal dialysis suggest an increased cardiovascular risk beyond classical dyslipidemia biomarkers [J]. Sci Rep, 2022, 12(1): 16394. doi:10.1038/s41598-022-20757-9
doi: 10.1038/s41598-022-20757-9 |
28 |
王晓燕, 邹小义, 祝翔. 铁超载调控氧化性低密度脂蛋白诱导泡沫细胞促动脉粥样硬化活化的作用 [J]. 实用医学杂志, 2024, 40(3): 295-301. doi:10.3969/j.issn.1006-5725.2024.03.003
doi: 10.3969/j.issn.1006-5725.2024.03.003 |
29 |
SPEER T, RIDKER P M, VON ECKARDSTEIN A, et al. Lipoproteins in chronic kidney disease: From bench to bedside [J]. Eur Heart J, 2021, 42(22): 2170-2185. doi:10.1093/eurheartj/ehaa1050
doi: 10.1093/eurheartj/ehaa1050 |
30 |
CHEN Z, SHRESTHA R, YANG X, et al. Oxidative Stress and Lipid Dysregulation in Lipid Droplets: A Connection to Chronic Kidney Disease Revealed in Human Kidney Cells [J]. Antioxidants (Basel), 2022, 11(7):1387. doi:10.3390/antiox11071387
doi: 10.3390/antiox11071387 |
31 |
LIDGARD B, HOOFNAGLE A N, ZELNICK L R, et al. High-Density Lipoprotein Lipidomics in Chronic Kidney Disease [J]. Clin Chem, 2023, 69(3): 273-282. doi:10.1093/clinchem/hvac216
doi: 10.1093/clinchem/hvac216 |
32 |
NOH S A, KIM S M, PARK S H, et al. Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry [J]. J Proteome Res, 2019, 18(7): 2803-2812. doi:10.1021/acs.jproteome.9b00108
doi: 10.1021/acs.jproteome.9b00108 |
33 |
AFSHINNIA F, RAJENDIRAN T M, SONI T, et al. Impaired beta-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD [J]. J Am Soc Nephrol, 2018, 29(1): 295-306. doi:10.1681/asn.2017030350
doi: 10.1681/asn.2017030350 |
34 |
AFSHINNIA F, NAIR V, LIN J, et al. Increased lipogenesis and impaired beta-oxidation predict type 2 diabetic kidney disease progression in American Indians [J]. JCI Insight, 2019, 4(21):e130317. doi:10.1172/jci.insight.130317
doi: 10.1172/jci.insight.130317 |
35 |
DAI Y, CHEN Y, MO D, et al. Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease [J]. Commun Biol, 2023, 6(1): 907. doi:10.1038/s42003-023-05272-5
doi: 10.1038/s42003-023-05272-5 |
36 |
吴瑶, 宋囡, 贾连群. 丹参酮ⅡA对ApoE-/-小鼠肝脏脂质沉积及铁死亡相关蛋白表达的影响 [J]. 中国病理生理杂志, 2020, 36(7): 1261-1268. doi:10.3969/j.issn.1000-4718.2020.07.016
doi: 10.3969/j.issn.1000-4718.2020.07.016 |
37 |
VAN SMAALEN T C, ELLIS S R, MASCINI N E, et al. Rapid Identification of Ischemic Injury in Renal Tissue by Mass-Spectrometry Imaging [J]. Anal Chem, 2019, 91(5): 3575-3581. doi:10.1021/acs.analchem.8b05521
doi: 10.1021/acs.analchem.8b05521 |
38 |
RAO S, WALTERS K B, WILSON L, et al. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging [J]. Am J Physiol Renal Physiol, 2016, 310(10): F1136-F1147. doi:10.1152/ajprenal.00100.2016
doi: 10.1152/ajprenal.00100.2016 |
39 |
POYAN MEHR A, TRAN M T, RALTO K M, et al. De novo NAD(+) biosynthetic impairment in acute kidney injury in humans [J]. Nat Med, 2018, 24(9): 1351-1359. doi:10.1038/s41591-018-0138-z
doi: 10.1038/s41591-018-0138-z |
40 |
李晶, 陆芹芹, 崔艳飞. 血清PGC-1α水平在脓毒症致急性肾损伤诊断中的价值 [J]. 实用医学杂志, 2023, 39(4): 471-475. doi:10.3969/j.issn.1006-5725.2023.04.015
doi: 10.3969/j.issn.1006-5725.2023.04.015 |
41 |
TRAN M T, ZSENGELLER Z K, BERG A H, et al. PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection [J]. Nature, 2016, 531(7595): 528-532. doi:10.1038/nature17184
doi: 10.1038/nature17184 |
42 |
POPE L E, DIXON S J. Regulation of ferroptosis by lipid metabolism [J]. Trends Cell Biol, 2023, 33(12): 1077-1087. doi:10.1016/j.tcb.2023.05.003
doi: 10.1016/j.tcb.2023.05.003 |
43 |
MARTIN-SAIZ L, GUERRERO-MAUVECIN J, MARTIN-SANCHEZ D, et al. Ferrostatin-1 modulates dysregulated kidney lipids in acute kidney injury [J]. J Pathol, 2022, 257(3): 285-299. doi:10.1002/path.5882
doi: 10.1002/path.5882 |
44 |
ZHANG H L, HU B X, LI Z L, et al. PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis [J]. Nat Cell Biol, 2022, 24(1): 88-98. doi:10.1038/s41556-021-00818-3
doi: 10.1038/s41556-021-00818-3 |
45 |
HUANG L, ZHANG L, ZHANG Z, et al. Loss of nephric augmenter of liver regeneration facilitates acute kidney injury via ACSL4-mediated ferroptosis [J]. J Cell Mol Med, 2024, 28(3): e18076. doi:10.1111/jcmm.18076
doi: 10.1111/jcmm.18076 |
46 |
POINDESSOUS V, LAZARETH H, CRAMBERT G, et al. STAT3 drives the expression of ACSL4 in acute kidney injury [J]. iScience, 2024, 27(6): 109737. doi:10.1016/j.isci.2024.109737
doi: 10.1016/j.isci.2024.109737 |
47 |
NIZIOL J, OSSOLINSKI K, TRIPET B P, et al. Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based serum metabolomics of kidney cancer [J]. Anal Bioanal Chem, 2020, 412(23): 5827-5841. doi:10.1007/s00216-020-02807-1
doi: 10.1007/s00216-020-02807-1 |
48 |
WOLRAB D, JIRASKO R, PETERKA O, et al. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls [J]. Sci Rep, 2021, 11(1): 20322. doi:10.1038/s41598-021-99586-1
doi: 10.1038/s41598-021-99586-1 |
49 |
NIZIOL J, OSSOLINSKI K, TRIPET B P, et al. Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients [J]. J Pharm Biomed Anal, 2021, 193: 113752. doi:10.1016/j.jpba.2020.113752
doi: 10.1016/j.jpba.2020.113752 |
50 |
ZHANG J, LI S Q, LIN J Q, et al. Mass Spectrometry Imaging Enables Discrimination of Renal Oncocytoma from Renal Cell Cancer Subtypes and Normal Kidney Tissues [J]. Cancer Res, 2020, 80(4): 689-698. doi:10.1158/0008-5472.can-19-2522
doi: 10.1158/0008-5472.can-19-2522 |
51 |
MONIRUJJAMAN M, AUKEMA H M. Cyclooxygenase 2 inhibition slows disease progression and improves the altered renal lipid mediator profile in the Pkd2(WS25/-) mouse model of autosomal dominant polycystic kidney disease [J]. J Nephrol, 2019, 32(3): 401-409. doi:10.1007/s40620-018-00578-8
doi: 10.1007/s40620-018-00578-8 |
52 |
RAO H, LIU C, WANG A, et al. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer [J]. Nat Commun, 2023, 14(1): 7572. doi:10.1038/s41467-023-43378-w
doi: 10.1038/s41467-023-43378-w |
53 |
EUM J Y, LEE J C, YI S S, et al. Aging-related lipidomic changes in mouse serum, kidney, and heart by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A, 2020, 1618: 460849. doi:10.1016/j.chroma.2020.460849
doi: 10.1016/j.chroma.2020.460849 |
[1] | Rui ZHANG,Ying ZHOU,Wenji NI,Ya HUANG,Dandan LI,Tao JIN,Yong. ZHONG. Application value of artificial intelligence⁃basedretinal microvascular analysis in diagnosis of diabetes complications [J]. The Journal of Practical Medicine, 2024, 40(8): 1142-1147. |
[2] | Ting HUANG,Rongcheng XIE,Yuting WANG,Xiaoming LIN,Jiefei. MA. Values of renal resistance index combined with blood and urinary biomarkers in early prediction of contrast⁃induced acute kidney injury after interventional surgery [J]. The Journal of Practical Medicine, 2024, 40(7): 1011-1016. |
[3] | Chengcai DAI,Zhenxing CHENG,Qianqian TU. The prognostic value of serum cystatin C combined with bedside renal ultrasound in patients with sepsis⁃induced acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(22): 3226-3231. |
[4] | Kunyuan HUANG,Kehua JIANG,Qing WANG. Research progress of S100A9 in renal diseases [J]. The Journal of Practical Medicine, 2024, 40(22): 3251-3255. |
[5] | Yuliang HUANG,Ying TANG,Wenjuan YU,Junzhe. CHEN. The mechanism of cyclin D1 ameliorates renal ischemia⁃reperfusion⁃induced acute kidney injury by promotingglycolysis [J]. The Journal of Practical Medicine, 2024, 40(21): 3013-3022. |
[6] | Lili TANG,Xinyu WANG,Jie ZHANG,Yue ZHAO,Xiaoyue LI. Research progress on the relationship between m6A methylation modification and acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(2): 278-282. |
[7] | Kaming YANG,Zhenlin LI,Wanwen LAO,Aixia ZHAI,Changlong. BI. Serological biomarkers for diagnosis of diabetes foot: A review of literature [J]. The Journal of Practical Medicine, 2024, 40(16): 2224-2228. |
[8] | Wei JIANG,Hui WANG,Zhongwei HUANG,Xinzhong. HUANG. The predictive value of soluble ST2 in sepsis⁃associated acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(16): 2291-2297. |
[9] | Yuan LI,Huiling LIU,Dan WU,Baobao. LI. Research advances of virulence factors in recurrent vulvovaginal candidiasis [J]. The Journal of Practical Medicine, 2024, 40(16): 2347-2351. |
[10] | Jie YANG,Chunhong LI,Jingfei HUANG,Zhiwei CHEN,Lin. LIU. The expression and clinical significance of hsa_circ_0003922 in endometrioid carcinoma [J]. The Journal of Practical Medicine, 2024, 40(14): 1975-1980. |
[11] | Guomin ZHAO,Hui ZHANG,Pucong YE,Wei. CHEN. Effect of lactate dehydrogenase to albumin ratio on the short⁃term prognosis in patients with sepsis⁃associated acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(13): 1803-1807. |
[12] | Yufeng JIN,Cunyi SHEN,Jingyao ZHANG,Yulong XUE,Dong. HE. Observation on the application effect of local citrate anticoagulation in CRRT tandem artificial liver treatment [J]. The Journal of Practical Medicine, 2024, 40(13): 1879-1884. |
[13] | Chunling PAN,Xueli YI,Li SU,Shengshan YUAN,Guijiang WEI. Research progress of circrna and atherosclerotic ischemic stroke [J]. The Journal of Practical Medicine, 2024, 40(12): 1755-1761. |
[14] | Jie SHEN,Guihua. XU. Research progress in the relationship between Alzheimer′s disease and blood⁃brain barrier [J]. The Journal of Practical Medicine, 2024, 40(11): 1602-1606. |
[15] | Yinbi ZHENG,Yiming SHAO,Zhaoji LI,Shiting LI,Mingdi CHEN,Wenchi ZENG,Hongyu. DONG. Effect of dexmedetomidine on renal function in patients with septic⁃associated acute kidney injury: A cohort study [J]. The Journal of Practical Medicine, 2024, 40(10): 1423-1428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||