The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (2): 278-282.doi: 10.3969/j.issn.1006-5725.2024.02.026
• Reviews • Previous Articles
Lili TANG,Xinyu WANG,Jie ZHANG,Yue ZHAO,Xiaoyue LI()
Received:
2023-08-10
Online:
2024-01-25
Published:
2024-03-06
Contact:
Xiaoyue LI
E-mail:euyeuy1983@126.com
CLC Number:
Lili TANG,Xinyu WANG,Jie ZHANG,Yue ZHAO,Xiaoyue LI. Research progress on the relationship between m6A methylation modification and acute kidney injury[J]. The Journal of Practical Medicine, 2024, 40(2): 278-282.
1 |
RONCO C, BELLOMO R, KELLUM J A. Acute kidney injury[J]. Lancet, 2019,394(10212):1949-1964. doi:10.1016/s0140-6736(19)32563-2
doi: 10.1016/s0140-6736(19)32563-2 |
2 |
HOSTE E A, BAGSHAW S M, BELLOMO R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015,41(8):1411-1423. doi:10.1007/s00134-015-3934-7
doi: 10.1007/s00134-015-3934-7 |
3 |
FU Y, DOMINISSINI D, RECHAVI G, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation[J]. Nat Rev Genet, 2014,15(5):293-306. doi:10.1038/nrg3724
doi: 10.1038/nrg3724 |
4 |
SU S, LI S, DENG T, et al. Cryo-EM structures of human m(6)A writer complexes[J]. Cell Res, 2022,32(11):982-994. doi:10.1038/s41422-022-00725-8
doi: 10.1038/s41422-022-00725-8 |
5 |
WANG X, FENG J, XUE Y, et al. Corrigendum: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2017,542(7640):260. doi:10.1038/nature21073
doi: 10.1038/nature21073 |
6 |
HUANG Q, MO J, LIAO Z, et al. The RNA m(6)A writer WTAP in diseases: structure, roles, and mechanisms[J]. Cell Death Dis, 2022,13(10):852. doi:10.1038/s41419-022-05268-9
doi: 10.1038/s41419-022-05268-9 |
7 |
PATIL D P, CHEN C K, PICKERING B F, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016,537(7620):369-373. doi:10.1038/nature19342
doi: 10.1038/nature19342 |
8 |
JIANG X, LIU B, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021,6(1):74. doi:10.1038/s41392-020-00450-x
doi: 10.1038/s41392-020-00450-x |
9 |
FANG X, LI M, YU T, et al. Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology[J]. Genes Dis, 2020,7(4):585-597. doi:10.1016/j.gendis.2020.06.011
doi: 10.1016/j.gendis.2020.06.011 |
10 |
JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011,7(12):885-887. doi:10.1038/nchembio.687
doi: 10.1038/nchembio.687 |
11 |
QU J, YAN H, HOU Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022,15(1):8. doi:10.1186/s13045-022-01224-4
doi: 10.1186/s13045-022-01224-4 |
12 |
CHEN Z, QI M, SHEN B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Res, 2019,47(5):2533-2545. doi:10.1093/nar/gky1250
doi: 10.1093/nar/gky1250 |
13 |
RIES R J, ZACCARA S, KLEIN P, et al. m(6)A enhances the phase separation potential of mRNA[J]. Nature, 2019,571(7765):424-428. doi:10.1038/s41586-019-1374-1
doi: 10.1038/s41586-019-1374-1 |
14 |
CHEN L, GAO Y, XU S, et al. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms[J]. Front Immunol, 2023,14:1162607. doi:10.3389/fimmu.2023.1162607
doi: 10.3389/fimmu.2023.1162607 |
15 |
WIDAGDO J, ANGGONO V, WONG J J. The multifaceted effects of YTHDC1-mediated nuclear m(6)A recognition[J]. Trends Genet, 2022,38(4):325-332. doi:10.1016/j.tig.2021.11.005
doi: 10.1016/j.tig.2021.11.005 |
16 |
HSU P J, ZHU Y, MA H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017,27(9):1115-1127. doi:10.1038/cr.2017.99
doi: 10.1038/cr.2017.99 |
17 |
HUANG H, WENG H, SUN W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018,20(3):285-295. doi:10.1038/s41556-018-0045-z
doi: 10.1038/s41556-018-0045-z |
18 |
ALARCON C R, GOODARZI H, LEE H, et al. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events[J]. Cell, 2015,162(6):1299-1308. doi:10.1016/j.cell.2015.08.011
doi: 10.1016/j.cell.2015.08.011 |
19 |
LIU N, DAI Q, ZHENG G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015,518(7540):560-564. doi:10.1038/nature14234
doi: 10.1038/nature14234 |
20 |
MEYER K D, PATIL D P, ZHOU J, et al. 5' UTR m(6)A Promotes Cap-Independent Translation[J]. Cell, 2015,163(4):999-1010. doi:10.1016/j.cell.2015.10.012
doi: 10.1016/j.cell.2015.10.012 |
21 |
SUN Y, JIN D, ZHANG Z, et al. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential[J]. Biochim Biophys Acta Gene Regul Mech, 2023,1866(4):194967. doi:10.1016/j.bbagrm.2023.194967
doi: 10.1016/j.bbagrm.2023.194967 |
22 |
李晶,陆芹芹,崔艳飞. 血清PGC-1α水平在脓毒症致急性肾损伤诊断中的价值[J]. 实用医学杂志, 2023,39(4):471-475. doi:10.3969/j.issn.1006-5725.2023.04.015
doi: 10.3969/j.issn.1006-5725.2023.04.015 |
23 |
LIU B, AO S, TAN F, et al. Transcriptomic analysis and laboratory experiments reveal potential critical genes and regulatory mechanisms in sepsis-associated acute kidney injury[J]. Ann Transl Med, 2022,10(13):737. doi:10.21037/atm-22-845
doi: 10.21037/atm-22-845 |
24 |
WANG J N, WANG F, KE J, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms[J]. Sci Transl Med, 2022,14(640):eabk2709. doi:10.1126/scitranslmed.abk2709
doi: 10.1126/scitranslmed.abk2709 |
25 |
PAN J, XIE Y, LI H, et al. mmu-lncRNA 121686/hsa-lncRNA 520657 induced by METTL3 drive the progression of AKI by targeting miR-328-5p/HtrA3 signaling axis[J]. Mol Ther, 2022,30(12):3694-3713. doi:10.1016/j.ymthe.2022.07.014
doi: 10.1016/j.ymthe.2022.07.014 |
26 |
HU C, ZHANG B, ZHAO S. METTL3-mediated N6-methyladenosine modification stimulates mitochondrial damage and ferroptosis of kidney tubular epithelial cells following acute kidney injury by modulating the stabilization of MDM2-p53-LMNB1 axis[J]. Eur J Med Chem, 2023,259:115677. doi:10.1016/j.ejmech.2023.115677
doi: 10.1016/j.ejmech.2023.115677 |
27 |
ZhU S, LU Y. Dexmedetomidine Suppressed the Biological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5[J]. Inflammation, 2020,43(6):2256-2263. doi:10.1007/s10753-020-01293-y
doi: 10.1007/s10753-020-01293-y |
28 |
YU F, ZHU A C, LIU S, et al. RBM33 is a unique m(6)A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity[J]. Mol Cell, 2023,83(12):2003-2019. doi:10.1016/j.molcel.2023.05.010
doi: 10.1016/j.molcel.2023.05.010 |
29 |
MAO Y, JIANG F, XU X J, et al. Inhibition of IGF2BP1 attenuates renal injury and inflammation by alleviating m6A modifications and E2F1/MIF pathway[J]. Int J Biol Sci, 2023,19(2):593-609. doi:10.7150/ijbs.78348
doi: 10.7150/ijbs.78348 |
30 |
ZHANG S, GUAN X, LIU W, et al. YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis[J]. Cell Death Discov, 2022,8(1):244. doi:10.1038/s41420-022-00872-2
doi: 10.1038/s41420-022-00872-2 |
31 |
邹丛,胡红林,涂云明,等. 吡格列酮保护糖尿病大鼠肾缺血再灌注损伤的实验研究[J]. 实用医学杂志, 2020,36(4):434-439. doi:10.3969/j.issn.1006-5725.2020.04.003
doi: 10.3969/j.issn.1006-5725.2020.04.003 |
32 |
陈康,周向军,程帆. N6-甲基腺苷甲基化与肾脏缺血再灌注损伤关系的研究进展[J]. 中华实验外科杂志, 2021,38(12):2542-2544. doi:10.3760/cma.j.cn421213-20210225-00167
doi: 10.3760/cma.j.cn421213-20210225-00167 |
33 |
MENG F, LIU Y, CHEN Q, et al. METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J]. Am J Physiol Renal Physiol, 2020,319(5):F839-F847. doi:10.1152/ajprenal.00222.2020
doi: 10.1152/ajprenal.00222.2020 |
34 |
XU Y, YUAN X D, WU J J, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1[J]. J Cell Biochem, 2020,121(1):524-533. doi:10.1002/jcb.29258
doi: 10.1002/jcb.29258 |
35 |
XING J, HE Y C, WANG K Y, et al. Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP[J]. FASEB J, 2022,36(2):e22144. doi:10.1096/fj.202100172rr
doi: 10.1096/fj.202100172rr |
36 |
熊冰瑶,康志娟,李志辉. 脂肪量和肥胖相关蛋白在人肾小管上皮细胞缺血再灌注损伤中的作用[J]. 中华实用儿科临床杂志, 2022,37(8):626-630. doi:10.3760/cma.j.cn101070-20210116-00070
doi: 10.3760/cma.j.cn101070-20210116-00070 |
37 |
ZHUANG C, ZHUANG C, LUO X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1alpha signalling axis[J]. J Cell Mol Med, 2019,23(3):2163-2173. doi:10.1111/jcmm.14128
doi: 10.1111/jcmm.14128 |
38 |
YANG Y, LI Q, LING Y, et al. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis[J]. Front Immunol, 2022,13:1094556. doi:10.3389/fimmu.2022.1094556
doi: 10.3389/fimmu.2022.1094556 |
39 |
CHEN J, XU C, YANG K, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment[J]. Nat Commun, 2023,14(1):1161. doi:10.1038/s41467-023-36747-y
doi: 10.1038/s41467-023-36747-y |
40 |
MEHTA R L, BURDMANN E A, CERDA J, et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study[J]. Lancet, 2016,387(10032):2017-2025. doi:10.1016/s0140-6736(16)30240-9
doi: 10.1016/s0140-6736(16)30240-9 |
41 |
HOLDITCH S J, BROWN C N, LOMBARDI A M, et al. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury[J]. Int J Mol Sci, 2019,20(12):3011. doi:10.3390/ijms20123011
doi: 10.3390/ijms20123011 |
42 |
LI C M, LI M, ZHAO W B, et al. Alteration of N6-Methyladenosine RNA Profiles in Cisplatin-Induced Acute Kidney Injury in Mice[J]. Front Mol Biosci, 2021,8:654465. doi:10.3389/fmolb.2021.654465
doi: 10.3389/fmolb.2021.654465 |
43 |
ZHOU P, WU M, YE C, et al. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m(6)A abrogation in RNA[J]. J Biol Chem, 2019,294(45):16908-16917. doi:10.1074/jbc.ra119.011009
doi: 10.1074/jbc.ra119.011009 |
44 |
LI S, ZHOU H, LIANG Y, et al. Integrated analysis of transcriptome-wide m(6)A methylation in a Cd-induced kidney injury rat model[J]. Ecotoxicol Environ Saf, 2023,256:114903. doi:10.1016/j.ecoenv.2023.114903
doi: 10.1016/j.ecoenv.2023.114903 |
45 |
WANG J, ISHFAQ M, XU L, et al. METTL3/m(6)A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway[J]. Front Pharmacol, 2019,10:517. doi:10.3389/fphar.2019.00517
doi: 10.3389/fphar.2019.00517 |
46 |
WAN S J, HUA Q, XING Y J, et al. Decreased Urine N6-methyladenosine level is closely associated with the presence of diabetic nephropathy in type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2022,13:986419. doi:10.3389/fendo.2022.986419
doi: 10.3389/fendo.2022.986419 |
[1] | Ting HUANG,Rongcheng XIE,Yuting WANG,Xiaoming LIN,Jiefei. MA. Values of renal resistance index combined with blood and urinary biomarkers in early prediction of contrast⁃induced acute kidney injury after interventional surgery [J]. The Journal of Practical Medicine, 2024, 40(7): 1011-1016. |
[2] | Chengcai DAI,Zhenxing CHENG,Qianqian TU. The prognostic value of serum cystatin C combined with bedside renal ultrasound in patients with sepsis⁃induced acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(22): 3226-3231. |
[3] | Kunyuan HUANG,Kehua JIANG,Qing WANG. Research progress of S100A9 in renal diseases [J]. The Journal of Practical Medicine, 2024, 40(22): 3251-3255. |
[4] | Yuliang HUANG,Ying TANG,Wenjuan YU,Junzhe. CHEN. The mechanism of cyclin D1 ameliorates renal ischemia⁃reperfusion⁃induced acute kidney injury by promotingglycolysis [J]. The Journal of Practical Medicine, 2024, 40(21): 3013-3022. |
[5] | Wei JIANG,Hui WANG,Zhongwei HUANG,Xinzhong. HUANG. The predictive value of soluble ST2 in sepsis⁃associated acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(16): 2291-2297. |
[6] | Guomin ZHAO,Hui ZHANG,Pucong YE,Wei. CHEN. Effect of lactate dehydrogenase to albumin ratio on the short⁃term prognosis in patients with sepsis⁃associated acute kidney injury [J]. The Journal of Practical Medicine, 2024, 40(13): 1803-1807. |
[7] | Yufeng JIN,Cunyi SHEN,Jingyao ZHANG,Yulong XUE,Dong. HE. Observation on the application effect of local citrate anticoagulation in CRRT tandem artificial liver treatment [J]. The Journal of Practical Medicine, 2024, 40(13): 1879-1884. |
[8] | Yinbi ZHENG,Yiming SHAO,Zhaoji LI,Shiting LI,Mingdi CHEN,Wenchi ZENG,Hongyu. DONG. Effect of dexmedetomidine on renal function in patients with septic⁃associated acute kidney injury: A cohort study [J]. The Journal of Practical Medicine, 2024, 40(10): 1423-1428. |
[9] |
LI Jing, LU Qinqin, CUI Yanfei..
Early diagnostic value of serum PGC⁃1α level for secondary acute kidney injury in patients with sepsis [J]. The Journal of Practical Medicine, 2023, 39(4): 471-475. |
[10] | Xiaolin LEI,Yanxiu LIU,Chan. ZHANG. Protective effects and the mechanism of miR⁃21⁃3p/p53 signaling pathway on renal function in mice with renal ischemia/reperfusion injury [J]. The Journal of Practical Medicine, 2023, 39(19): 2475-2482. |
[11] | LI Xiaoling, ZHOU Wenjie, DENG Wei, MA Xigang.. Prognostic value of coagulation function index combined with serum cystatin C in patients with septic acute kidney injury [J]. The Journal of Practical Medicine, 2023, 39(1): 81-85. |
[12] |
WU Yanli, ZHOU Wenjie, LI Xiaoling, MA Xigang..
Correlation between serum NOD⁃like receptor protein 3,interleukin⁃18 and severity of septicacute kidneyinjury [J]. The Journal of Practical Medicine, 2022, 38(4): 484-489. |
[13] |
YANG Linlin, LIU Gang, YI Rui, WANG Juan, XIE Zhenhua, LIU Chengqiong, CHEN Jie.
Research progress on risk prediction of acute renal injury
[J]. The Journal of Practical Medicine, 2022, 38(18): 2367-2372.
|
[14] | DENG Linlin, ZHANG Xiao, GAO Yi, GONG Yuanqi, LAN Haibing.. Mechanism of involvement of miR⁃216a insepsis⁃inducedacute kidney injury by regulating NF⁃κB signaling pathway [J]. The Journal of Practical Medicine, 2022, 38(17): 2133-2137. |
[15] |
AN Wei, LIANG Haoyue, KONG Xiaodong..
Progress on Raman spectroscopy for differential diagnosis of renal diseases [J]. The Journal of Practical Medicine, 2022, 38(16): 2094-2099. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||