The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (9): 1191-1196.doi: 10.3969/j.issn.1006-5725.2024.09.003
• Basic Research • Previous Articles Next Articles
Xiuting HUANG,Jie LIN,Xiaoxin YE,Jiazuo CAI,Yawei. YUAN()
Received:
2023-12-25
Online:
2024-05-10
Published:
2024-05-15
Contact:
Yawei. YUAN
E-mail:yuanyawei@gzhmu.edu.cn
CLC Number:
Xiuting HUANG,Jie LIN,Xiaoxin YE,Jiazuo CAI,Yawei. YUAN. Copper regulates the radiosensitivity of nasopharyngeal carcinoma by activating MAPK-ERK signaling pathway[J]. The Journal of Practical Medicine, 2024, 40(9): 1191-1196.
Tab.2
Cell viability of CNE1 after addition of copper ion solution"
Cu2+浓度 (μmol/L) | 细胞存活率 | P值# | P值* | |
---|---|---|---|---|
未放射 | 5Gy放射 | |||
0 | 100.00 ± 3.93 | 40.41 ± 3.48 | ||
5 | 99.00 ± 5.47 | 52.56 ± 2.24 | 0.999 | < 0.001 |
10 | 96.79 ± 4.75 | 63.91 ± 1.87 | 0.653 | < 0.001 |
20 | 98.78 ± 6.27 | 67.80 ± 2.96 | 0.999 | < 0.001 |
50 | 86.99 ± 2.21 | 51.84 ± 2.84 | < 0.001 | < 0.001 |
100 | 62.13 ± 4.09 | 29.92 ± 1.13 | < 0.001 | < 0.001 |
200 | 33.35 ± 4.24 | 13.05 ± 1.01 | < 0.001 | < 0.001 |
Tab.3
Cell viability of SUNE1 after TEPA administration"
TEPA浓度 (mmol/L) | 细胞存活率 | P值# | P值* | |
---|---|---|---|---|
未放射 | 5Gy放射 | |||
0 | 100.00 ± 3.26 | 61.78 ± 4.40 | ||
0.05 | 102.70 ± 3.72 | 58.20 ± 2.10 | 0.856 | 0.193 |
0.10 | 101.80 ± 1.94 | 50.89 ± 2.96 | 0.976 | < 0.001 |
0.20 | 99.57 ± 4.73 | 41.57 ± 2.77 | 1.000 | < 0.001 |
0.50 | 82.37 ± 9.66 | 31.30 ± 3.48 | < 0.001 | < 0.001 |
1.00 | 77.64 ± 3.52 | 26.09 ± 2.68 | < 0.001 | < 0.001 |
2.00 | 66.12 ± 4.43 | 22.48 ± 2.08 | < 0.001 | < 0.001 |
1 |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023,73(1):17-48. doi:10.3322/caac.21763
doi: 10.3322/caac.21763 |
2 |
WONG K C W, HUI E P, LO K W, et al. Nasopharyngeal carcinoma: an evolving paradigm[J]. Nat Rev Clin Oncol, 2021,18(11):679-695. doi:10.1038/s41571-021-00524-x
doi: 10.1038/s41571-021-00524-x |
3 |
LEE A W M, NG W T, CHAN J Y W, et al. Management of locally recurrent nasopharyngeal carcinoma[J]. Cancer Treat Rev,2019,79:101890. doi:10.1016/j.ctrv.2019.101890
doi: 10.1016/j.ctrv.2019.101890 |
4 |
赵海鹰,李思维. 复发鼻咽癌综合治疗及其进展[J]. 实用医学杂志,2018,34(5):691-693,697. doi:10.3969/j.issn.1006-5725.2018.05.001
doi: 10.3969/j.issn.1006-5725.2018.05.001 |
5 |
CHEN L, MIN J, WANG F. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022,7(1):378. doi:10.1038/s41392-022-01229-y
doi: 10.1038/s41392-022-01229-y |
6 |
GUAN D, ZHAO L, SHI X, et al. Copper in cancer: From pathogenesis to therapy[J]. Biomed Pharmacother, 2023,163:114791. doi:10.1016/j.biopha.2023.114791
doi: 10.1016/j.biopha.2023.114791 |
7 |
FANG C, PENG Z, SANG Y, et al. Copper in Cancer: from transition metal to potential target[J]. Hum Cell, 2024,37(1):85-100. doi:10.1007/s13577-023-00985-5
doi: 10.1007/s13577-023-00985-5 |
8 |
HSU H Y, LIN S Y, HUANG C J, et al. Changes of serum copper and zinc levels in patients with nasopharyngeal carcinoma by radiotherapy[J]. Biol Trace Elem Res, 1994,46(1/2):1-13. doi:10.1007/bf02790064
doi: 10.1007/bf02790064 |
9 |
FANG A P, CHEN P Y, WANG X Y, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort[J]. Int J Cancer, 2019,144(11):2823-2832. doi:10.1002/ijc.31991
doi: 10.1002/ijc.31991 |
10 |
WANG W, WANG X, LUO J, et al. Serum Copper Level and the Copper-to-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China[J]. Nutr Cancer, 2021,73(10):1908-1915. doi:10.1080/01635581.2020.1817957
doi: 10.1080/01635581.2020.1817957 |
11 |
ZHANG L, SHAO J, TAN S W, et al. Association between serum copper/zinc ratio and lung cancer: A systematic review with meta-analysis[J]. J Trace Elem Med Biol, 2022,74:127061. doi:10.1016/j.jtemb.2022.127061
doi: 10.1016/j.jtemb.2022.127061 |
12 |
BENGTSSON Y, DEMIRCAN K, VALLON-CHRISTERSSON J, et al. Serum copper, zinc and copper/zinc ratio in relation to survival after breast cancer diagnosis: A prospective multicenter cohort study[J]. Redox Biol, 2023,63:102728. doi:10.1016/j.redox.2023.102728
doi: 10.1016/j.redox.2023.102728 |
13 |
YANG M, WU X, HU J, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol, 2022,76(5):1138-1150. doi:10.1016/j.jhep.2022.01.009
doi: 10.1016/j.jhep.2022.01.009 |
14 |
ARNESANO F, NATILE G. Interference between copper transport systems and platinum drugs[J]. Semin Cancer Biol, 2021,76:173-188. doi:10.1016/j.semcancer.2021.05.023
doi: 10.1016/j.semcancer.2021.05.023 |
15 |
KUO M T, HUANG Y F, CHOU C Y, et al. Targeting the Copper Transport System to Improve Treatment Efficacies of Platinum-Containing Drugs in Cancer Chemotherapy[J]. Pharmaceuticals (Basel), 2021,14(6):549. doi:10.3390/ph14060549
doi: 10.3390/ph14060549 |
16 | KADU P, SAWANT B, KALE P P, et al. Copper-lowering agents as an adjuvant in chemotherapy[J]. Indian J Pharmacol,2021,53(3):221-225. |
17 |
ULLAH R, YIN Q, SNELL A H, et al. RAF-MEK-ERK pathway in cancer evolution and treatment[J]. Semin Cancer Biol, 2022,85:123-154. doi:10.1016/j.semcancer.2021.05.010
doi: 10.1016/j.semcancer.2021.05.010 |
18 |
BRADY D C, CROWE M S, TURSKI M L, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis[J]. Nature, 2014,509(7501):492-496. doi:10.1038/nature13180
doi: 10.1038/nature13180 |
19 |
MARAMPON F, CICCARELLI C, ZANI B M. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation[J]. Int J Mol Sci, 2019,20(10):2530. doi:10.3390/ijms20102530
doi: 10.3390/ijms20102530 |
20 |
刘慧,何彩娴,彭继勇,等. 鼻咽癌放射治疗致放射性颈动脉损伤的研究进展[J]. 实用医学杂志, 2023,39(10):1201-1205. doi:10.3969/j.issn.1006-5725.2023.10.002
doi: 10.3969/j.issn.1006-5725.2023.10.002 |
21 |
TESSMER C F, HRGOVCIC M, THOMAS F B, et al. Serum copper as an index of tumor response to radiotherapy[J]. Radiology, 1973,106(3):635-639. doi:10.1148/106.3.635
doi: 10.1148/106.3.635 |
22 |
JIANG Y, HUO Z, QI X, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine (Lond), 2022,17(5):303-324. doi:10.2217/nnm-2021-0374
doi: 10.2217/nnm-2021-0374 |
23 |
XUE Q, YAN D, CHEN X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023,19(7):1982-1996. doi:10.1080/15548627.2023.2165323
doi: 10.1080/15548627.2023.2165323 |
24 |
ISHIDA S, ANDREUX P, POITRY-YAMATE C,et al. Bioavailable copper modulates oxidative phosphorylation and growth of tumors[J]. Proc Natl Acad Sci U S A, 2013,110(48):19507-19512. doi:10.1073/pnas.1318431110
doi: 10.1073/pnas.1318431110 |
25 |
WU Z, LV G, XING F, et al. Copper in hepatocellular carcinoma: A double-edged sword with therapeutic potentials[J]. Cancer Lett, 2023,571:216348. doi:10.1016/j.canlet.2023.216348
doi: 10.1016/j.canlet.2023.216348 |
26 |
BLOCKHUYS S, ZHANG X, WITTUNG-STAFSHEDE P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration[J]. Proc Natl Acad Sci U S A, 2020,117(4):2014-2019. doi:10.1073/pnas.1910722117
doi: 10.1073/pnas.1910722117 |
27 |
HE F, CHANG C, LIU B, et al. Copper (II) Ions Activate Ligand-Independent Receptor Tyrosine Kinase (RTK) Signaling Pathway[J]. Biomed Res Int, 2019:4158415. doi:10.1155/2019/4158415
doi: 10.1155/2019/4158415 |
28 |
GUO J, CHENG J, ZHENG N, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner[J]. Adv Sci (Weinh),2021,8(18):e2004303. doi:10.1002/advs.202004303
doi: 10.1002/advs.202004303 |
29 |
BRADY D C, CROWE M S, TURSKI M L, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis[J]. Nature, 2014,509(7501):492-496. doi:10.1038/nature13180
doi: 10.1038/nature13180 |
30 |
TURSKI M L, BRADY D C, KIM H J, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling[J]. Mol Cell Biol, 2012,32(7):1284-1295. doi:10.1128/mcb.05722-11
doi: 10.1128/mcb.05722-11 |
31 |
ZHANG W, CHEN C, SHI H, et al. Curcumin is a biologically active copper chelator with antitumor activity[J]. Phytomedicine,2016,23(1):1-8. doi:10.1016/j.phymed.2015.11.005
doi: 10.1016/j.phymed.2015.11.005 |
32 |
XIE J, YANG Y, GAO Y, et al. Cuproptosis: mechanisms and links with cancers[J]. Mol Cancer, 2023,22(1):46. doi:10.1186/s12943-023-01732-y
doi: 10.1186/s12943-023-01732-y |
33 |
CHAN N, WILLIS A, KORNHAUSER N, et al. Influencing the Tumor Microenvironment: A Phase Ⅱ Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases [J]. Clin Cancer Res, 2017,23(3):666-676. doi:10.1158/1078-0432.ccr-16-1326
doi: 10.1158/1078-0432.ccr-16-1326 |
34 |
BRADY D C, CROWE M S, GREENBERG D N, et al. Copper Chelation Inhibits BRAFV600E-Driven Melanomagenesis and Counters Resistance to BRAFV600E and MEK1/2 Inhibitors[J]. Cancer Res,2017,77(22):6240-6252. doi:10.1158/0008-5472.can-16-1190
doi: 10.1158/0008-5472.can-16-1190 |
35 |
CUI L, GOUW A M, LAGORY E L,et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice[J]. Nat Biotechnol,2021,39(3):357-367. doi:10.1038/s41587-020-0707-9
doi: 10.1038/s41587-020-0707-9 |
36 |
常卫才,陈佳伟,刘子祥,等. 乙酰肝素酶通过ERK/MMP-9信号通路促进胆囊癌细胞侵袭和迁移[J]. 实用医学杂志, 2023,39(13):1620-1626. doi:10.3969/j.issn.1006-5725.2023.13.005
doi: 10.3969/j.issn.1006-5725.2023.13.005 |
37 |
LIU X, FENG Y, XU J, et al. Combination of MAPK inhibition with photothermal therapy synergistically augments the anti-tumor efficacy of immune checkpoint blockade[J]. J Control Release,2021,332:194-209. doi:10.1016/j.jconrel.2021.02.020
doi: 10.1016/j.jconrel.2021.02.020 |
38 |
YU J, WU X, SONG J,et al. Loss of MHC-I antigen presentation correlated with immune checkpoint blockade tolerance in MAPK inhibitor-resistant melanoma[J]. Front Pharmacol, 2022,13:928226. doi:10.3389/fphar.2022.928226
doi: 10.3389/fphar.2022.928226 |
[1] | Kai LIAO,Yunhong TIAN,Ronghui ZHENG,Caixian HE,Jiyong PENG,Huijun LI. Reduction of head and neck lymphedema by placing dose limiting rings in the anterior and posterior regions of the neck for treating early nasopharyngeal carcinoma using intensity-modulated radiotherapy: A dosimetric perspective [J]. The Journal of Practical Medicine, 2024, 40(12): 1659-1664. |
[2] | Qian DOU,Yuzhen ZHANG,Yong. ZHOU. EBV infection and influencing factors of nasopharyngeal carcinoma screening population in Guangzhou [J]. The Journal of Practical Medicine, 2024, 40(10): 1440-1444. |
[3] |
YE Hua, WU Jingbo..
Interstitial brachytherapy in locally advanced non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2023, 39(5): 525-532. |
[4] |
ZHOU Yong, CHEN Hao, DOU Qian, LI Yue, LIU Wofeng..
An applied study on assessing the risk of nasopharyngeal carcinoma in Guangzhou population based on 5 kinds of EBV antibodies
[J]. The Journal of Practical Medicine, 2023, 39(5): 602-612.
|
[5] |
LIU Kun, CAI Qiong, XU Lei, ZHOU Ying, LI Jing, NING Renli..
Self ⁃ perceived burden and influencing factors in nasopharyngeal carcinoma patients treated with proton and heavy ion radiotherapy [J]. The Journal of Practical Medicine, 2023, 39(3): 350-354. |
[6] |
LIAO Zhiwei, ZHU Jianman, ZHOU Tongchong, ZHENG Ronghui..
Effect of LncRNA TUG1 on biological behavior and radiosensitivity of nasopharyngeal carcinoma [J]. The Journal of Practical Medicine, 2023, 39(2): 209-216. |
[7] | WU Yingning, HUANG Li′na.. The relationship between MRI diffusion kurtosis imaging and NPC clinical stage [J]. The Journal of Practical Medicine, 2023, 39(13): 1704-1708. |
[8] | LIU Hui, HE Caixian, PENG Jiyong, ZHONG Xi, LIAO Kai, YUAN Yawei, ZHENG Ronghui.. Carotid arterial injuries caused by radiotherapy for nasopharyngeal carcinoma:A review [J]. The Journal of Practical Medicine, 2023, 39(10): 1201-1205. |
[9] |
XU Lu, HUANG Liyou, WANG Yanhua, WEN Linchun..
Efficacy and safety ofPD ⁃ 1 inhibitor combined with brain radiotherapy for brain metastases in patients with pan⁃negative non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2022, 38(24): 3100-3105. |
[10] |
FANG Nan, ZHANG Jun′ an, SUN Junqi, ZHANG Xiangguo, CHEN Dongping, ZHENG Lu, DENG Ying, YANG Zhanxin, DONG Enlai, QI Bin..
Prognostic value of diffusion ⁃weighted MRI combine with tumor volume for the short ⁃ term treatment response ofnasopharynxin nasopharyngeal carcinoma [J]. The Journal of Practical Medicine, 2021, 37(8): 1037-1045. |
[11] |
CHEN Xi, ZHU Yueying, SHI Dianyu, YAN Shuai, TANG Guodong, ZOU Yu.
Influence of LncRNA HOTAIR on invasion and migration of nasopharyngeal carcinoma cells by regulating miR⁃30d
[J]. The Journal of Practical Medicine, 2021, 37(3): 314-318.
|
[12] |
CHANG Hao, HE Dongjie, YU Dequan, ZHANG Zishen, ZHAO Pinting, QI Yuhong, SHAO Qiuju, YUAN Can⁃ liang..
An analysis on recurrence pattern and survival in patients undergoing IMRT for medulloblastoma [J]. The Journal of Practical Medicine, 2021, 37(21): 2786-2790. |
[13] |
WANG Ruilian, TAN Jinyun, LU Zirong, LIU Hui, FENG Jianhui, ZHENG Ronghui. .
The influencing factors of hypothyroidism after intense⁃modulated radiotherapy and sequential anti⁃PD⁃1 immunotherapy for nasopharyngeal carcinoma [J]. The Journal of Practical Medicine, 2021, 37(16): 2114-2118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||