1 |
ZHOU J, DU M, CHANG S, et al. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis[J]. Cardiovasc Ultrasound, 2021, 19(1): 1-11.
|
2 |
LIAO Z, GIRGIS H, ABDI A, et al. On modelling label uncertainty in deep neural networks: Automatic estimation of intra-observer variability in 2d echocardiography quality assessment[J]. IEEE Trans Med Imaging, 2020, 39(6): 1868-1883.
|
3 |
JAFARI M H, GIRGIS H, VAN WOUDENBERG N, et al. Cardiac point-of-care to cart-based ultrasound translation using constrained CycleGAN[J]. Int J Comput Assist Radiol Surg, 2020, 15(5): 877-886.
|
4 |
张勇, 鲁晓, 李昕, 等. 超声医学图像及报告质量管理系统设计与应用[J]. 中国卫生质量管理, 2022, 29(4): 73-76.
|
5 |
DONG J, LIU S, LIAO Y, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes[J]. IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
|
6 |
ZAMZMI G, RAJARAMAN S, HSU L Y, et al. Real-time echocardiography image analysis and quantification of cardiac indices[J]. Med Image Anal, 2022, 80: 102438.
|
7 |
ZHANG J, GAJJALA S, AGRAWAL P, et al. Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy[J]. Circulation, 2018, 138(16): 1623-1635.
|
8 |
HUANG K C, HUANG C S, SU M Y, et al. Artificial intelligence aids cardiac image quality assessment for improving precision in strain measurements[J]. Cardiovasc Imaging, 2021, 14(2): 335-345.
|
9 |
ABDI A H, LUONG C, TSANG T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view[J]. IEEE Trans Med Imaging, 2017, 36(6): 1221-1230.
|
10 |
LUONG C, LIAO Z, ABDI A, et al. Automated estimation of echocardiogram image quality in hospitalized patients[J]. Int J Cardiovasc Imaging, 2021, 37: 229-239.
|
11 |
GAUDET J, WAECHTER J, MCLAUGHLIN K, et al. Focused critical care echocardiography: development and evaluation of an image acquisition assessment tool[J]. Crit Care Med, 2016, 44(6): 329-335.
|
12 |
LI J, XIA X, LI W, et al. Next-vit: Next generation vision transformer for efficient deployment in realistic industrial scenarios[J]. arXiv e-prints, 2022. doi: 10.48550/arXiv.2207.05501 .
doi: 10.48550/arXiv.2207.05501
|
13 |
CHOU P Y, LIN C H, KAO W C. A novel plug-in module for fine-grained visual classification[J]. arXiv e-prints, 2022. doi: 10.48550/arXiv.2202.03822 .
doi: 10.48550/arXiv.2202.03822
|
14 |
KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J]. Adv Neural Inf Process Syst, 2020, 33: 18661-18673.
|
15 |
YANG S, WU T, SHI S, et al. Maniqa: Multi-dimension attention network for no-reference image quality assessment[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2022. doi: 10.48550/arXiv.2204.08958 .
doi: 10.48550/arXiv.2204.08958
|
16 |
SHEN Y T, CHEN L, YUE W W, et al. Artificial intelligence in ultrasound[J]. Eur J Radiol, 2021, 139: 109717.
|
17 |
ZHANG Z, ZHU Y, LIU M, et al. Artificial Intelligence-Enhanced Echocardiography for Systolic Function Assessment[J]. J Clin Med, 2022, 11(10): 2893.
|
18 |
罗刚, 泮思林, 乔思波, 等. 深度学习技术在胎儿超声心动图图像自动识别中的应用[J]. 实用医学杂志, 2022, 38(14): 1830-1833.
|
19 |
SEHLY A, JALTOTAGE B, HE A, et al. Artificial Intelligence in Echocardiography: The Time is Now[J]. Rev Cardiovasc Med, 2022, 23(8): 256.
|
20 |
FERRAZ S, COIMBRA M, PEDROSA J. Assisted probe guidance in cardiac ultrasound: A review[J]. Front Cardiovasc Med, 2023, 10: 1056055.
|