| [1] |
GU Y Y, ZHAO X R, ZHANG N, et al. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions[J]. Ageing Res Rev,2024,102:102577. doi:10.1016/j.arr.2024.102577
doi: 10.1016/j.arr.2024.102577
|
| [2] |
DING X S, GAO L, HAN Z, et al. Ferroptosis in Parkinson′s disease: Molecular mechanisms and therapeutic potential[J]. Ageing Res Rev, 2023, 91: 102077. doi:10.1016/j.arr.2023.102077
doi: 10.1016/j.arr.2023.102077
|
| [3] |
ZHOU Z D, TAN E K. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease[J]. Ageing Res Rev,2020,62:101107. doi:10.1016/j.arr.2020.101107
doi: 10.1016/j.arr.2020.101107
|
| [4] |
PISSADAKI E K, BOLAM J P. The energy cost of action potential propagation in dopamine neurons: Clues to susceptibility in Parkinson's disease[J]. Front Comput Neurosci,2013,7:13. doi:10.3389/fncom.2013.00013
doi: 10.3389/fncom.2013.00013
|
| [5] |
XI Y, TAO K, WEN X, et al. SIRT3-Mediated Deacetylation of DRP1K711 Prevents Mitochondrial Dysfunction in Parkinson's Disease[J]. Adv Sci (Weinh),2025,e2411235. doi:10.1002/advs.202570126
doi: 10.1002/advs.202570126
|
| [6] |
CHEN Y, ZHAO A, LI Y,et al. Roles of SIRT3 in cardiovascular and neurodegenerative diseases[J]. Ageing Res Rev,2025,104:102654. doi:10.1016/j.arr.2024.102654
doi: 10.1016/j.arr.2024.102654
|
| [7] |
RANGARAJAN P, KARTHIKEYAN A, LU J, et al.Dheen ST. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia[J]. Neuroscience, 2015,311:398-414. doi:10.1016/j.neuroscience.2015.10.048
doi: 10.1016/j.neuroscience.2015.10.048
|
| [8] |
WANG J, YUE H, DONG Y, et al. Effective compound combination of Bufei Yishen formula ameliorates PM2.5-induced COPD by inhibiting mitochondrial oxidative stress through SIRT3-mediated FOXO3 deacetylation[J]. Phytomedicine,2025,140:156568. doi:10.1016/j.phymed.2025.156568
doi: 10.1016/j.phymed.2025.156568
|
| [9] |
FABBRI M, FERREIRA J J, RASCOL O. COMT Inhibitors in the Management of Parkinson's Disease[J]. CNS Drugs,2022,36(3):261-282. doi:10.1007/s40263-021-00888-9
doi: 10.1007/s40263-021-00888-9
|
| [10] |
高崚,陈王璐,王照钦,等. 针灸对帕金森病小鼠外周血Th17/Treg平衡的调节作用[J]. 中华中医药杂志,2022,37(12):7033-7038.
|
| [11] |
李亚楠,汪瑶,张小蕾,等. 电针对帕金森病小鼠便秘症状的影响[J]. 北京中医药大学学报,2022,45(1):102-108.
|
| [12] |
汪瑶,王彦春,马骏. 电针对帕金森病大鼠中脑黑质Sirt3/NLRP3/GSDMD信号通路的影响[J]. 针刺研究,2024,49(4):384-390.
|
| [13] |
张小蕾,胡梦妮,荣臻,等. 电针对帕金森病小鼠Nrf2/NLRP3/Caspase-1通路介导的细胞焦亡的影响[J]. 针刺研究,2024,49(1):15-22.
|
| [14] |
李含章,李亚楠,郭磊,等. 电针对帕金森病小鼠肠道NEK7/NLRP3炎症信号通路的影响[J]. 北京中医药大学学报,2024,47(10):1466-1473.
|
| [15] |
JEON H, RYU S, KIM D, et al. Acupuncture stimulation at GB34 restores MPTP-induced neurogenesis impairment in the subventricular zone of mice[J]. Evid Based Complement Alternat Med, 2017, 2017: 3971675. doi:10.1155/2017/3971675
doi: 10.1155/2017/3971675
|
| [16] |
中国针灸学会. 实验动物常用穴位名称与定位第3部分: 小鼠[J]. 针刺研究, 2021, 46(5): 445-446.
|
| [17] |
LUO H, PENG C, XU X, et al. The Protective Effects of Mogroside V Against Neuronal Damages by Attenuating Mitochondrial Dysfunction via Upregulating Sirtuin3[J]. Mol Neurobiol,2022,59(4):2068-2084. doi:10.1007/s12035-021-02689-z
doi: 10.1007/s12035-021-02689-z
|
| [18] |
ZHANG Q S, HENG Y, MOU Z, et al. Reassessment of subacute MPTP-treated mice as animal model of Parkinson′s disease[J]. Acta Pharmacol Sin, 2017, 38(10): 1317-1328. doi:10.1038/aps.2017.49
doi: 10.1038/aps.2017.49
|
| [19] |
张家瑞,陆瑾,王玥,等. 针灸治疗帕金森病作用机制的研究进展[J]. 中医药导报,2025,31(6):150-153,174.
|
| [20] |
NAMASHIRI A, ABBASADEH M, GHAZIZADEH A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis[J]. Neurosci Biobehav Rev,2022,140:104792. doi:10.1016/j.neubiorev.2022.104792
doi: 10.1016/j.neubiorev.2022.104792
|
| [21] |
HSU W T, CHEN Y H, YANG H B, et al. Electroacupuncture Improves Motor Symptoms of Parkinson's Disease and Promotes Neuronal Autophagy Activity in Mouse Brain[J]. Am J Chin Med,2020,48(7):1651-1669. doi:10.1142/s0192415x20500822
doi: 10.1142/s0192415x20500822
|
| [22] |
胡梦妮,张小蕾,荣臻,等. 电针对MPTP诱导帕金森病小鼠FoXO1/NLRP3通路介导神经炎症的影响[J]. 实用医学杂志,2024,40(11):1494-1499. doi:10.3969/j.issn.1006-5725.2024.11.005
doi: 10.3969/j.issn.1006-5725.2024.11.005
|
| [23] |
SONG L K, MA K L, YUAN Y H, et al. Targeted Overexpression of α-Synuclein by rAAV2/1 Vectors Induces Progressive Nigrostriatal Degeneration and Increases Vulnerability to MPTP in Mouse[J]. PLoS One, 2015, 10(6):e0131281. doi:10.1371/journal.pone.0131281
doi: 10.1371/journal.pone.0131281
|
| [24] |
BIOSA A, ARDUINI I, SORIANO M E, et al. Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson's Disease[J]. ACS Chem Neurosci, 2018,9(11):2849-2858. doi:10.1021/acschemneuro.8b00276
doi: 10.1021/acschemneuro.8b00276
|
| [25] |
熊薇,柴星星,李莉莉. 虾青素对帕金森病黑质多巴胺能神经元保护作用机制的研究进展[J]. 生理科学进展,1-13.
|
| [26] |
JIMENEZ-DELHADO A, ORTIZ G G, DELGADO-LARA D L, et al. Effect of Melatonin Administration on Mitochondrial Activity and Oxidative Stress Markers in Patients with Parkinson's Disease[J]. Oxid Med Cell Longev, 2021,2021:5577541. doi:10.1155/2021/5577541
doi: 10.1155/2021/5577541
|
| [27] |
LA VITOLA P, SZEGO E M, PINTO-COSTA R, et al. Mitochondrial oxidant stress promotes α-synuclein aggregation and spreading in mice with mutated glucocerebrosidase[J]. NPJ Parkinsons Dis, 2024,10(1):233. doi:10.1038/s41531-024-00842-8
doi: 10.1038/s41531-024-00842-8
|
| [28] |
ZOROVA L D, POPKOV V A, PLOTNIKOV E Y, et al. Mitochondrial membrane potential[J]. Anal Biochem, 2018, 552: 50-59. doi:10.1016/j.ab.2017.07.009
doi: 10.1016/j.ab.2017.07.009
|
| [29] |
GONCALVES A M, PEREIR-SANTOS A R, ESTEVES A R, et al. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease[J]. Antioxid Redox Signal,2021,34(8):694-711. doi:10.1089/ars.2019.7997
doi: 10.1089/ars.2019.7997
|
| [30] |
PILLAI V B, SUNDARESAN N R, JEEVANANDAM V, et al. Mitochondrial SIRT3 and heart disease[J]. Cardiovasc Res,2010,88(2):250-256. doi:10.1093/cvr/cvq250
doi: 10.1093/cvr/cvq250
|
| [31] |
PARK J H, BURGESS J D, FAROQI A H, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway[J]. Mol Neurodegener, 2020,15(1):5. doi:10.1186/s13024-019-0349-x
doi: 10.1186/s13024-019-0349-x
|
| [32] |
ZHOU Y, ZHAO Q, ZHANG Y, et al. A new andrographolide derivative ADA targeting SIRT3-FOXO3a signaling mitigates cognitive impairment by activating mitophagy and inhibiting neuroinflammation in Apoe4 mice[J]. Phytomedicine,2024, 124: 155298. doi:10.1016/j.phymed.2023.155298
doi: 10.1016/j.phymed.2023.155298
|
| [33] |
ZHU X, MA E, GE Y, et al. Resveratrol protects against myocardial ischemic injury in obese mice via activating SIRT3/FOXO3a signaling pathway and restoring redox homeostasis[J]. Biomed Pharmacother,2024,174:116476. doi:10.1016/j.biopha.2024.116476
doi: 10.1016/j.biopha.2024.116476
|
| [34] |
张贵君,王彦春,汪瑶,等. 电针调节帕金森病小鼠黑质脑区SIRT3/AMPK/PGC-1α通路的作用研究[J]. 中国中医基础医学杂志,2025,31(1):99-106.
|