实用医学杂志 ›› 2025, Vol. 41 ›› Issue (24): 3802-3808.doi: 10.3969/j.issn.1006-5725.2025.24.002
• 脑与心身医学专栏 • 上一篇
收稿日期:2025-07-29
出版日期:2025-12-25
发布日期:2025-12-25
通讯作者:
张雪竹
E-mail:xzzhang@tjutcm.edu.cn
基金资助:
Zhiyi CHEN,Sirui LIU,Jingxian HAN,Xuezhu. ZHANG(
)
Received:2025-07-29
Online:2025-12-25
Published:2025-12-25
Contact:
Xuezhu. ZHANG
E-mail:xzzhang@tjutcm.edu.cn
摘要:
阿尔茨海默病(Alzheimer's disease, AD)是一种以β-淀粉样蛋白(Aβ)沉积和Tau蛋白过度磷酸化为特征的神经退行性疾病,在其病理发展过程中,氧化应激扮演着重要角色。研究发现,DNA甲基化作为关键表观遗传调控机制,与氧化应激共同构成AD病理进展的核心网络。该文综述了AD中DNA甲基化异常如何通过调控抗氧化能力、损伤线粒体功能及触发炎症通路加剧氧化损伤的分子机制,同时,探讨了氧化应激通过消耗甲基供体、诱导DNA氧化性损伤以及导致表观遗传酶失活进而引发的甲基化失衡在AD中的交互作用,旨在识别早期AD的分子诊断标志物,为探索氧化还原失衡以及表观遗传失调的联合治疗策略提供创新思路和依据。
中图分类号:
陈祉伊,刘思睿,韩景献,张雪竹. 阿尔茨海默病中DNA甲基化与氧化应激的双向调控与正反馈网络[J]. 实用医学杂志, 2025, 41(24): 3802-3808.
Zhiyi CHEN,Sirui LIU,Jingxian HAN,Xuezhu. ZHANG. Interaction between DNA methylation and oxidative stress in Alzheimer′s disease: Bidirectional regulation and positive⁃feedback networks[J]. The Journal of Practical Medicine, 2025, 41(24): 3802-3808.
| [1] |
陈虹茹, 何川, 黄重生, 等. 电针联合重复经颅磁刺激对D-半乳糖诱导的阿尔茨海默病样模型大鼠学习记忆能力及神经炎症的影响[J]. 实用医学杂志, 2021, 37(12): 1534-1538. doi:10.3969/j.issn.1006
doi: 10.3969/j.issn.1006 |
| [2] | 梁璇, 慕静然, 骆延, 等. CRMP2磷酸化参与阿尔茨海默病的机制研究进展[J]. 实用医学杂志, 2024, 40(10): 1467-1472. |
| [3] |
LUO R, YU J T. New biomarkers for early-stage tau pathology in Alzheimer's disease[J]. Nat Aging, 2025, 5(5): 734-735. doi:10.1038/s43587-025-00854-w
doi: 10.1038/s43587-025-00854-w |
| [4] | 靳盼盼, 刘洋, 邱博, 等. 仑卡奈单抗在早期阿尔兹海默病治疗中的研究进展[J]. 中国临床药理学与治疗学, 2024, 29(2): 207-214. |
| [5] |
PRITAM P, DEKA R, BHARDWAJ A, et al. Antioxidants in Alzheimer's disease: Current therapeutic significance and future prospects[J]. Biology (Basel), 2022, 11(2): 212. doi:10.3390/biology11020212
doi: 10.3390/biology11020212 |
| [6] |
KAUR G, RATHOD S S S, GHONEIM M M, et al. DNA Methylation: A Promising Approach in Management of Alzheimer′s Disease and Other Neurodegenerative Disorders[J]. Biology(Basel), 2022, 11(1): 90. doi:10.3390/biology11010090
doi: 10.3390/biology11010090 |
| [7] |
BAI R, GUO J, YE X Y, et al. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease[J]. Ageing Res Rev, 2022, 77: 101619. doi:10.1016/j.arr.2022.101619
doi: 10.1016/j.arr.2022.101619 |
| [8] |
NAVABI S M, KOMI D E, AFSHARI D, et al. Adjunctive silymarin supplementation and its effects on disease severity, oxidative stress, and inflammation in patients with Alzheimer's disease[J]. Nutr Neurosci, 2024, 27(10): 1077-1087. doi:10.1080/1028415x.2023.2301163
doi: 10.1080/1028415x.2023.2301163 |
| [9] |
HAMPEL H, HARDY J, BLENNOW K, et al. The Amyloid-β pathway in Alzheimer's disease[J]. Mol Psychiatry, 2021, 26(10): 5481-5503. doi:10.1038/s41380-021-01249-0
doi: 10.1038/s41380-021-01249-0 |
| [10] | YU Y, YU S, BATTAGLIA G, et al. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects[J]. Ibrain, 2024, 10(3): 266-289. |
| [11] |
CHEIGNON C, TOMAS M, BONNEFONT-ROUSSELOT D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer's disease[J]. Redox Biol, 2018, 14: 450-464. doi:10.1016/j.redox.2017.10.014
doi: 10.1016/j.redox.2017.10.014 |
| [12] |
ZHANG Y, DONG Z, SONG W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer's disease[J]. Signal Transduct Target Ther, 2020, 5(1): 37. doi:10.1038/s41392-020-0145-7
doi: 10.1038/s41392-020-0145-7 |
| [13] |
SEDDON A R, MACARTHUR C P, HAMPTON M B, et al. Inflammation and DNA methylation in Alzheimer's disease: Mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain[J]. Redox Rep, 2024, 29(1): 2428152. doi:10.1080/13510002.2024.2428152
doi: 10.1080/13510002.2024.2428152 |
| [14] |
OSSENKOPPELE R, VAN DER KANT R, HANSSON O. Tau biomarkers in Alzheimer's disease: Towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-734. doi:10.1016/s1474-4422(22)00168-5
doi: 10.1016/s1474-4422(22)00168-5 |
| [15] |
ABYADEH M, GUPTA V, PAULO J A, et al. Amyloid-beta and tau protein beyond Alzheimer's disease[J]. Neural Regen Res, 2024, 19(6): 1262-1276. doi:10.4103/1673-5374.386406
doi: 10.4103/1673-5374.386406 |
| [16] |
YE J, WAN H, CHEN S, et al. Targeting tau in Alzheimer's disease: From mechanisms to clinical therapy[J]. Neural Regen Res, 2024, 19(7): 1489-1498. doi:10.4103/1673-5374.385847
doi: 10.4103/1673-5374.385847 |
| [17] |
BABIĆ LEKO M, LANGER HORVAT L, ŠPANIĆ POPOVAČKI E, et al. Metals in Alzheimer′s Disease[J]. Biomedicines, 2023, 11(4): 1161. doi:10.3390/biomedicines11041161
doi: 10.3390/biomedicines11041161 |
| [18] |
WANG L, YIN Y L, LIU X Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer's disease[J]. Transl Neurodegener, 2020, 9: 10. doi:10.1186/s40035-020-00189-z
doi: 10.1186/s40035-020-00189-z |
| [19] |
MIGLIORE L, COPPEDÈ F. Gene-environment interactions in Alzheimer disease: The emerging role of epigenetics[J]. Nat Rev Neurol, 2022, 18(11): 643-660. doi:10.1038/s41582-022-00714-w
doi: 10.1038/s41582-022-00714-w |
| [20] |
STRITTMATTER W J, SAUNDERS A M, SCHMECHEL D, et al. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease[J]. Proc Natl Acad Sci U S A, 1993, 90(5): 1977-1981. doi:10.1073/pnas.90.5.1977
doi: 10.1073/pnas.90.5.1977 |
| [21] |
FORTEA J, PEGUEROLES J, ALCOLEA D, et al. APOE4 homozygosity represents a distinct genetic form of Alzheimer's disease[J]. Nat Med, 2024, 30(5): 1284-1291. doi:10.1038/s41591-024-02931-w
doi: 10.1038/s41591-024-02931-w |
| [22] |
BAILEY M, ILCHOVSKA Z G, HOSSEINI A A, et al. Impact of Apolipoprotein E ε4 in Alzheimer's disease: A Meta-Analysis of Voxel-Based morphometry studies[J]. J Clin Neurol, 2024, 20(5): 469-477. doi:10.3988/jcn.2024.0176
doi: 10.3988/jcn.2024.0176 |
| [23] |
LI L, QIU Y, MIAO M, et al. Reduction of Tet2 exacerbates early stage Alzheimer's pathology and cognitive impairments in 2×Tg-AD mice[J]. Hum Mol Genet, 2020, 29(11): 1833-1852. doi:10.1093/hmg/ddz282
doi: 10.1093/hmg/ddz282 |
| [24] |
SIMS R, HILL M, WILLIAMS J. The multiplex model of the genetics of Alzheimer's disease[J]. Nat Neurosci, 2020, 23(3): 311-322. doi:10.1038/s41593-020-0599-5
doi: 10.1038/s41593-020-0599-5 |
| [25] |
QIN H Y, LIU J Y, FANG C L, et al. DNA methylation: The epigenetic mechanism of Alzheimer's disease[J]. Ibrain, 2023, 9(4): 463-472. doi:10.1002/ibra.12121
doi: 10.1002/ibra.12121 |
| [26] |
DE JAGER P L, SRIVASTAVA G, LUNNON K, et al. Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci[J]. Nat Neurosci, 2014, 17(9): 1156-1163. doi:10.1038/nn.3786
doi: 10.1038/nn.3786 |
| [27] |
ZHANG W, YOUNG J I, GOMEZ L, et al. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects[J]. Alzheimers Res Ther, 2023, 15(1): 78. doi:10.1186/s13195-023-01216-7
doi: 10.1186/s13195-023-01216-7 |
| [28] |
KAMINSKAS E, FARRELL A T, WANG Y C, et al. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension[J]. Oncologist, 2005, 10(3): 176-182. doi:10.1634/theoncologist.10-3-176
doi: 10.1634/theoncologist.10-3-176 |
| [29] |
IONESCU-TUCKER A, COTMAN C W. Emerging roles of oxidative stress in brain aging and Alzheimer's disease[J]. Neurobiol Aging, 2021, 107: 86-95. doi:10.1016/j.neurobiolaging.2021.07.014
doi: 10.1016/j.neurobiolaging.2021.07.014 |
| [30] |
JUNG Y D, PARK S K, KANG D, et al. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells[J]. Redox Biol, 2020, 37: 101716. doi:10.1016/j.redox.2020.101716
doi: 10.1016/j.redox.2020.101716 |
| [31] |
MIR H A, ALI R, MUSHTAQ U, et al. Structure-functional implications of longevity protein p66Shc in health and disease[J]. Ageing Res Rev, 2020, 63: 101139. doi:10.1016/j.arr.2020.101139
doi: 10.1016/j.arr.2020.101139 |
| [32] |
HASLEM L, HAYS J M, HAYS F A. p66Shc in cardiovascular pathology[J]. Cells, 2022, 11(11): 1855. doi:10.3390/cells11111855
doi: 10.3390/cells11111855 |
| [33] |
XIAO Y, XIA J, CHENG J, et al. Inhibition of S-Adenosy-lhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-Mediated oxidative stress pathway[J]. Circulation, 2019, 139(19): 2260-2277. doi:10.1161/circulationaha.118.036336
doi: 10.1161/circulationaha.118.036336 |
| [34] | 张园青, 林珏, 黄莉. 维生素D对阿尔茨海默病细胞模型中DNA甲基化作用研究[J]. 神经药理学报, 2024, 14(6): 39-44. |
| [35] | HENEKA M T, VAN DER FLIER W M, JESSEN F, et al. Neuroinflammation in Alzheimer disease[J]. Nat Rev Immunol, 2025, 25(5): 321-352. |
| [36] |
KONG X, GONG Z, ZHANG L, et al. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation[J]. Brain Behav Immun, 2019, 79: 159-173. doi:10.1016/j.bbi.2019.01.027
doi: 10.1016/j.bbi.2019.01.027 |
| [37] |
SUBEDI L, LEE S E, MADIHA S, et al. Phytochemicals against TNFα-Mediated neuroinflammatory diseases[J]. Int J Mol Sci, 2020, 21(3): 764. doi:10.3390/ijms21030764
doi: 10.3390/ijms21030764 |
| [38] |
OKA S, LEON J, SAKUMI K, et al. MTH1 and OGG1 maintain a low level of 8-oxoguanine in Alzheimer's brain, and prevent the progression of Alzheimer's pathogenesis[J]. Sci Rep, 2021, 11(1): 5819. doi:10.1038/s41598-021-84640-9
doi: 10.1038/s41598-021-84640-9 |
| [39] |
HAHM J Y, PARK J, JANG E S, et al. 8-Oxoguanine: From oxidative damage to epigenetic and epitranscriptional modification[J]. Exp Mol Med, 2022, 54(10): 1626-1642. doi:10.1038/s12276-022-00822-z
doi: 10.1038/s12276-022-00822-z |
| [40] |
IIDA T, FURUTA A, NISHIOKA K, et al. Expression of 8-oxoguanine DNA glycosylase is reduced and associated with neurofibrillary tangles in Alzheimer's disease brain[J]. Acta Neuropathol, 2002, 103(1): 20-25. doi:10.1007/s004010100418
doi: 10.1007/s004010100418 |
| [41] |
SONG Y, ZHU X Y, ZHANG X M, et al. Targeted mitochondrial epigenetics: A new direction in Alzheimer's disease treatment[J]. Int J Mol Sci, 2022, 23(17): 9703. doi:10.3390/ijms23179703
doi: 10.3390/ijms23179703 |
| [42] |
MCMINIMY R, MANFORD A G, GEE C L, et al. Reactive oxygen species control protein degradation at the mitochondrial import gate[J]. Mol Cell, 2024, 84(23): 4612-4628. doi:10.1016/j.molcel.2024.11.004
doi: 10.1016/j.molcel.2024.11.004 |
| [43] |
BRUNETTI D, TORSVIK J, DALLABONA C, et al. Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration[J]. EMBO Mol Med, 2016, 8(3): 176-190. doi:10.15252/emmm.201505894
doi: 10.15252/emmm.201505894 |
| [44] |
TONG T, ZHU C, FARRELL J J, et al. Blood-derived mitochondrial DNA copy number is associated with Alzheimer disease, Alzheimer-related biomarkers and serum metabolites[J]. Alzheimers Res Ther, 2024, 16(1): 234. doi:10.1186/s13195-024-01601-w
doi: 10.1186/s13195-024-01601-w |
| [45] |
ZHANG Y R, WU B S, CHEN S D, et al. Whole exome sequencing analyses identified novel genes for Alzheimer's disease and related dementia[J]. Alzheimers Dement, 2024, 20(10): 7062-7078. doi:10.1002/alz.14181
doi: 10.1002/alz.14181 |
| [46] |
COCHRAN J N, GEIER E G, BONHAM L W, et al. Non-coding and Loss-of-Function coding variants in TET2 are associated with multiple neurodegenerative diseases[J]. Am J Hum Genet, 2020, 106(5): 632-645. doi:10.1016/j.ajhg.2020.03.010
doi: 10.1016/j.ajhg.2020.03.010 |
| [47] |
XU X, PANG Y, FAN X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances[J]. Signal Transduct Target Ther, 2025, 10(1): 190. doi:10.1038/s41392-025-02253-4
doi: 10.1038/s41392-025-02253-4 |
| [48] |
BALASUBRAMANIAN N, SAGARKAR S, CHOUDHARY A G, et al. Epigenetic blockade of hippocampal SOD2 via DNMT3b-Mediated DNA methylation: Implications in mild traumatic brain Injury-Induced persistent oxidative damage[J]. Mol Neurobiol, 2021, 58(3): 1162-1184. doi:10.1007/s12035-020-02166-z
doi: 10.1007/s12035-020-02166-z |
| [49] |
ZHANG W W, FENG C, JIANG H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy[J]. Ageing Res Rev, 2021, 65: 101207. doi:10.1016/j.arr.2020.101207
doi: 10.1016/j.arr.2020.101207 |
| [50] |
CAO H M, WANG L, CHEN B B, et al. DNA demethylation upregulated Nrf2 expression in Alzheimer's disease cellular model[J]. Front Aging Neurosci, 2016, 7: 244. doi:10.3389/fnagi.2015.00244
doi: 10.3389/fnagi.2015.00244 |
| [51] |
ZHANG M, HUO D S, CAI Z P, et al. The effect of schizandrol A-Induced DNA methylation on SH-SY5YAB 1-40 altered neuronal cell line: A potential use in Alzheimer's disease[J]. J Toxicol Environ Health A, 2015, 78(21-22): 1321-1327. doi:10.1080/15287394.2015.1085942
doi: 10.1080/15287394.2015.1085942 |
| [1] | 韩英妹,李一杰,张衡,李伟庆,冯泽,王丰. 深度学习在阿尔茨海默病疾病转化预测影像学研究中的应用价值[J]. 实用医学杂志, 2025, 41(9): 1413-1424. |
| [2] | 杨金山,贾本忠,钟思文,李涛,李登宝. 植物乳杆菌LB12对大鼠肾草酸钙结石的影响[J]. 实用医学杂志, 2025, 41(8): 1130-1138. |
| [3] | 李荣鑫,黄丽,曾悦阳,张淑慧,陈怡然,刘玉丽,马铁明. 基于NF-κB/NLRP3/Caspase-1信号通路探讨电针改善阿尔茨海默病模型大鼠认知功能障碍的机制[J]. 实用医学杂志, 2025, 41(3): 322-329. |
| [4] | 郑路,张好好,吴飞飞,郭佳琪,王有琴,郝芮敏,冯李慧,李燕. 艾塞那肽对糖尿病小鼠下丘脑氧化应激的保护作用及其机制[J]. 实用医学杂志, 2025, 41(3): 330-338. |
| [5] | 宋雨影,卡力比努尔·赛买提,周旭,宋向新,谢伊代·阿卜迪米吉,迪丽热巴·艾则孜,哈斯也提·依不来音. 定量磁敏感成像分析阿尔茨海默病患者脑铁沉积特点及与认知功能的相关性[J]. 实用医学杂志, 2025, 41(20): 3267-3275. |
| [6] | 吴兴卫,王建营,郭成晓,刘紫仪,孙超,于飞. 瑞马唑仑调节ROS/RAGE/NF-κB信号通路对LPS诱导的小胶质细胞炎症的影响[J]. 实用医学杂志, 2025, 41(2): 153-161. |
| [7] | 郭晋言,尤雨晴,陈可,潘芬,赖嘉慧,陈素芳,姚伟锋. 七氟烷调控Wnt/β-catenin信号通路对脓毒症急性肺损伤的保护机制[J]. 实用医学杂志, 2025, 41(19): 2991-2999. |
| [8] | 杨文莉,包桐,林欣,牛茹歌,徐中驰,赵云贺. 黄蜀葵花制剂防治急性放射性心肌损伤的效果[J]. 实用医学杂志, 2025, 41(17): 2631-2636. |
| [9] | 李京朔,刘首诗,郭宏伟. 毛兰素诱导乳腺癌细胞凋亡的机制及治疗潜力的研究进展[J]. 实用医学杂志, 2025, 41(14): 2132-2137. |
| [10] | 赵曰景,陈泽霖,张武. 封闭负压引流联合Ilizarov胫骨横向骨搬移术对重度糖尿病足患者的氧化应激、炎症反应的影响[J]. 实用医学杂志, 2025, 41(13): 2052-2057. |
| [11] | 陆良喜,陆海旺,王文杰,史珺,黄志敏,宾彬. 线粒体自噬调控前列腺组织中NLRP3炎症小体的表达在实验性自身免疫性前列腺炎大鼠中的作用机制[J]. 实用医学杂志, 2025, 41(12): 1816-1824. |
| [12] | 张莉,傅蕴婷. 脑小血管病患者血清磷酸化Tau蛋白-181、γ-谷氨酰转肽酶、沉默信息调节因子1与睡眠障碍的相关性[J]. 实用医学杂志, 2025, 41(12): 1867-1872. |
| [13] | 戴玲慧,李伟峰. 线粒体稳态在血管性认知障碍中的研究进展[J]. 实用医学杂志, 2025, 41(12): 1936-1944. |
| [14] | 吴俐虹,郭燕,曹静,杜晓燕,梁青青,高晓诚,王艳茹,邓洋,高龙. 氧化钕暴露致小鼠脑组织损伤的机制研究[J]. 实用医学杂志, 2025, 41(1): 30-34. |
| [15] | 陈露露,罗萌,苏凯奇,高静,冯晓东. 内质网-线粒体互作在卒中后认知障碍中的研究进展[J]. 实用医学杂志, 2024, 40(7): 1023-1028. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

