[1] |
MARDER S R, CANNON T D. Schizophrenia [J]. N Engl J Med, 2019, 381(18): 1753-1761. doi:10.1056/nejmra1808803
doi: 10.1056/nejmra1808803
|
[2] |
CHEN J, MULLER V I, DUKSRT J, et al. Intrinsic Connectivity Patterns of Task-Defined Brain Networks Allow Individual Prediction of Cognitive Symptom Dimension of Schizophrenia and Are Linked to Molecular Architecture [J]. Biol Psychiatry, 2021, 89(3): 308-319. doi:10.1016/j.biopsych.2020.09.024
doi: 10.1016/j.biopsych.2020.09.024
|
[3] |
ZHANG S, LI W, XIANG Q, et al. Longitudinal alterations of modular functional-metabolic coupling in first-episode schizophrenia [J]. J Psychiatr Res, 2022, 156:705-712. doi:10.1016/j.jpsychires.2022.10.067
doi: 10.1016/j.jpsychires.2022.10.067
|
[4] |
俞天悦, 郭茜, 胡昊, 等. 精神分裂症中氧化应激相关通路与诊断和预测价值的研究进展[J]. 实用医学杂志, 2024,40(20):2935-2940.
|
[5] |
AYANO G, DEMELASH S, YOHANNES Z, et al. Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized psychiatry centers in Ethiopia [J]. Ann Gen Psychiatry, 2021, 20(1): 10. doi:10.1186/s12991-021-00333-7
doi: 10.1186/s12991-021-00333-7
|
[6] |
郝飞, 范丰梅, 朱小林, 等. 精神分裂症近红外光谱脑功能成像研究进展 [J]. 中华精神科杂志, 2016, 49(2): 113-117.
|
[7] |
KOIKE S, SATMOURA Y, KAWASAKI S, et al. Application of functional near infrared spectroscopy as supplementary examination for diagnosis of clinical stages of psychosis spectrum [J]. Psychiatry Clin Neurosci, 2017, 71(12): 794-806. doi:10.1111/pcn.12551
doi: 10.1111/pcn.12551
|
[8] |
WEI Y, CHEN Q, CURTIN A, et al. Functional near-infrared spectroscopy (fNIRS) as a tool to assist the diagnosis of major psychiatric disorders in a Chinese population [J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(4): 745-757. doi:10.1007/s00406-020-01125-y
doi: 10.1007/s00406-020-01125-y
|
[9] |
QIAO Y, SONG X, YAN J, et al. Neurological activation during verbal fluency task and resting-state functional connectivity abnormalities in obsessive-compulsive disorder: A functional near-infrared spectroscopy study [J]. Front Psychiatry, 2024, 15:151416810. doi:10.3389/fpsyt.2024.1416810
doi: 10.3389/fpsyt.2024.1416810
|
[10] |
ROSENBAUM D, HAGEN K, DEPPERMANN S, et al. State-dependent altered connectivity in late-life depression: A functional near-infrared spectroscopy study[J].Neurobiol Aging, 2016, 39: 57-68. doi:10.1016/j.neurobiolaging.2015.11.022
doi: 10.1016/j.neurobiolaging.2015.11.022
|
[11] |
RIVHSRDS A L, PARDINAS A F, FRIZZATI A, et al. The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia [J]. Schizophr Bull, 2020, 46(2): 336-344.
|
[12] |
RAHMAN M A, SIDDIK A B, GHOSH T K, et al. A Narrative Review on Clinical Applications of fNIRS [J]. J Digit Imaging, 2020, 33(5): 1167-1184. doi:10.1007/s10278-020-00387-1
doi: 10.1007/s10278-020-00387-1
|
[13] |
徐若愚, 李献云. 稳定期精神分裂症在不同情绪启动下反应抑制特点 [J]. 中国神经精神疾病杂志, 2022, 48(10): 614-618.
|
[14] |
管晓枫, 胡欣怡, 陆峥. 精神分裂症诊断标准更新与分类变化[J]. 重庆医科大学学报,2021,46(7):760-763.
|
[15] |
VITA A, GAEBEL W, MUCCI A, et al. European Psychiatric Association guidance on assessment of cognitive impairment in schizophrenia[J]. Eur Psychiatry, 2022, 65(1): e58. doi:10.1192/j.eurpsy.2022.2316
doi: 10.1192/j.eurpsy.2022.2316
|
[16] |
李佳, 林荫, 吉训琦, 等. 载脂蛋白E和MTHFR C677T基因多态性与精神分裂症及患者认知功能的关联性[J]. 实用医学杂志, 2021,37(18):2391-2394.
|
[17] |
RUND B R, BARDER H E, EVENSEN J, et al. Neurocognition and Duration of Psychosis: A 10-year Follow-up of First-Episode Patients [J]. Schizophr Bull, 2016, 42(1): 87-95.
|
[18] |
LIU D, JI C, ZHUO K, et al. Impaired cue identification and intention retrieval underlie prospective memory deficits in patients with first-episode schizophrenia [J]. Aust N Z J Psychiatry, 2017, 51(3): 270-277. doi:10.1177/0004867416640097
doi: 10.1177/0004867416640097
|
[19] |
LIANG J, CHEN L, LI Y, et al. Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway's Role on Schizophrenia's Cognitive Impairments: A Multimodal Study in Patients and Mouse Models [J]. Schizophr Bull, 2024, 50(4):913-923. doi:10.1093/schbul/sbae063
doi: 10.1093/schbul/sbae063
|
[20] |
HUSAIN S F, TANG T B, YU R, et al. Cortical haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major depression and borderline personality disorder [J]. EBioMedicine, 2020, 51: 102586. doi:10.1016/j.ebiom.2019.11.047
doi: 10.1016/j.ebiom.2019.11.047
|
[21] |
YAMAMURO K, KIMOTO S, IIDA J, et al. Distinct patterns of blood oxygenation in the prefrontal cortex in clinical phenotypes of schizophrenia and bipolar disorder [J]. J Affect Disord, 2018, 234:45-53. doi:10.1016/j.jad.2018.02.065
doi: 10.1016/j.jad.2018.02.065
|
[22] |
PAUL T, SEE J W, VIJAKUMAR V, et al. Neurostructural changes in schizophrenia and treatment-resistance: A narrative review [J]. Psychoradiology, 2024, 4:kkae015. doi:10.1093/psyrad/kkae015
doi: 10.1093/psyrad/kkae015
|
[23] |
YEUNG M K, LIN J. Probing depression, schizophrenia, and other psychiatric disorders using fNIRS and the verbal fluency test: A systematic review and meta-analysis [J]. J Psychiatr Res, 2021, 140:416-435. doi:10.1016/j.jpsychires.2021.06.015
doi: 10.1016/j.jpsychires.2021.06.015
|
[24] |
ZHANG K, JIN X, HE Y, et al. Atypical frontotemporal cortical activity in first-episode adolescent-onset schizophrenia during verbal fluency task: A functional near-infrared spectroscopy study [J]. Front Psychiatry, 2023, 14:1126131.
|
[25] |
CHOU P H, LIU W C, LIN W H, et al. NIRS-aided differential diagnosis among patients with major depressive disorder, bipolar disorder, and schizophrenia [J]. J Affect Disord, 2023, 15(341): 366-373.
|