1 |
SALEH E, UKWAS A. Adenoid Cystic Carcinoma of Salivary Glands: A Ten-Year Review and an Assessment of the Current Management, Surgery, Radiotherapy, and Chemotherapy[J]. Int J Otolaryngol, 2023,2023(1):1-8. doi:10.1155/2023/7401458
doi: 10.1155/2023/7401458
|
2 |
CANTÙ G. Adenoid cystic carcinoma. An indolent but aggressive tumour. Part A: From aetiopathogenesis to diagnosis[J]. Acta Otorhinolaryngol Ital, 2021,41(3):206-214. doi:10.14639/0392-100x-n1379
doi: 10.14639/0392-100x-n1379
|
3 |
CHOWSILPA S, AN D, MALEKI Z. Adenoid cystic carcinoma cytology: Salivary gland and nonsalivary gland[J]. Diagn Cytopathol, 2020,48(12):1282-1289. doi:10.1002/dc.24573
doi: 10.1002/dc.24573
|
4 |
LIU X, YANG X, ZHAN C, et al. Perineural Invasion in Adenoid Cystic Carcinoma of the Salivary Glands: Where We Are and Where We Need to Go[J]. Front Oncol, 2020,10(1):1-13. doi:10.3389/fonc.2020.01493
doi: 10.3389/fonc.2020.01493
|
5 |
FANG Y, PENG Z, WANG Y, et al. Current opinions on diagnosis and treatment of adenoid cystic carcinoma[J]. Oral Oncol, 2022,130(1):1-15. doi:10.1016/j.oraloncology.2022.105945
doi: 10.1016/j.oraloncology.2022.105945
|
6 |
MICHAELIDES I, KÜNZEL J, ETTL T, et al. Adenoid cystic carcinoma of the salivary glands: A pilot study of potential therapeutic targets and characterization of the immunological tumor environment and angiogenesis[J]. Eur Arch Otorhinolaryngol, 2023,280(6):2937-2944. doi:10.1007/s00405-023-07884-3
doi: 10.1007/s00405-023-07884-3
|
7 |
XU X, LAI C, LUO J, et al. The predictive significance of chromobox family members in prostate cancer in humans[J]. Cell Oncol (Dordr), 2024,47(4):1315-1331. doi:10.1007/s13402-024-00929-7
doi: 10.1007/s13402-024-00929-7
|
8 |
PENG L, HUANG X, QING D, et al. MiR-30a-5p inhibits cell behaviors in esophageal cancer via modulating CBX2[J]. Mutat Res, 2023,826(1):1-11. doi:10.1016/j.mrfmmm.2023.111818
doi: 10.1016/j.mrfmmm.2023.111818
|
9 |
LU C, TAN Y. Promising immunotherapy targets: TIM3, LAG3, and TIGIT joined the party[J]. Mol Ther Oncol, 2024,32(1):2-13. doi:10.1016/j.omton.2024.200773
doi: 10.1016/j.omton.2024.200773
|
10 |
PALACIOS LM, PEYRET V, VIANO ME, et al. TIM3 Expression in Anaplastic-Thyroid-Cancer-Infiltrating Macrophages: An Emerging Immunotherapeutic Target[J]. Biology (Basel), 2022,11(11):1-13. doi:10.3390/biology11111609
doi: 10.3390/biology11111609
|
11 |
BAYAT P, MAHDAVI N, YOUNESPOUR S, et al. Interactive role of miR-29, miR-93, miR-205, and VEGF in salivary adenoid cystic carcinoma[J]. Clin Exp Dent Res, 2023,9(1):112-121. doi:10.1002/cre2.678
doi: 10.1002/cre2.678
|
12 |
WANG J, YANG B, ZHANG X, et al. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review)[J]. Int J Oncol, 2023,62(3):1-12. doi:10.3892/ijo.2023.5484
doi: 10.3892/ijo.2023.5484
|
13 |
HU CY, LI X, ZENG T, et al. Significance of chromobox protein (CBX) expression in diffuse LBCL[J]. Gene, 2022,813(1):1-12. doi:10.1016/j.gene.2021.146092
doi: 10.1016/j.gene.2021.146092
|
14 |
SUN R, TU X, CHAN S, et al. CBX2 Deletion Suppresses Growth and Metastasis of Colorectal Cancer by Mettl3-p38/ERK MAPK Signalling Pathway[J]. J Cancer, 2024,15(8):2123-2136. doi:10.7150/jca.92633
doi: 10.7150/jca.92633
|
15 |
ZHU J, LUO J E, CHEN Y, et al. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer[J]. J Ovarian Res, 2021,14(1):1-13. doi:10.1186/s13048-021-00888-9
doi: 10.1186/s13048-021-00888-9
|
16 |
ZENG M, LI B, YANG L, et al. CBX2 depletion inhibits the proliferation, invasion and migration of gastric cancer cells by inactivating the YAP/β-catenin pathway[J]. Mol Med Rep, 2021,23(2):137-146. doi:10.3892/mmr.2020.11776
doi: 10.3892/mmr.2020.11776
|
17 |
LI W, SHI R, GAO Y, et al. CBX2 promotes cervical cancer cell proliferation and resistance to DNA-damaging treatment via maintaining cancer stemness[J]. J Biol Chem, 2025,301(2):1-10. doi:10.1016/j.jbc.2025.108170
doi: 10.1016/j.jbc.2025.108170
|
18 |
朱元媛,闫洪超,刘永利,等. BTLA、LAG3和TIM3在上皮性卵巢癌组织中的表达意义[J]. 实用医学杂志,2019,35(5):698-702.
|
19 |
ZHAO L, CHENG S, FAN L, et al. TIM-3: An update on immunotherapy[J]. Int Immunopharmacol, 2021,99(1):1-13. doi:10.1016/j.intimp.2021.107933
doi: 10.1016/j.intimp.2021.107933
|
20 |
KANDEL S, ADHIKARY P, LI G, et al. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy[J]. Cancer Lett, 2021,510(1):67-78. doi:10.1016/j.canlet.2021.04.011
doi: 10.1016/j.canlet.2021.04.011
|
21 |
SAUER N, JANICKA N, SZLASA W, et al. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors[J]. Cancer Immunol Immunother, 2023,72(11):3405-3425. doi:10.1007/s00262-023-03516-1
doi: 10.1007/s00262-023-03516-1
|
22 |
YANG R, SUN L, LI C F,et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy[J]. Nat Commun, 2021,12(1):832-845. doi:10.1038/s41467-021-21099-2
doi: 10.1038/s41467-021-21099-2
|
23 |
GARDNER A, DE MINGO PULIDO Á, HÄNGGI K, et al. TIM-3 blockade enhances IL-12-dependent antitumor immunity by promoting CD8+ T cell and XCR1+ dendritic cell spatial co-localization[J]. J Immunother Cancer, 2022,10(1):1-11. doi:10.1136/jitc-2021-003571
doi: 10.1136/jitc-2021-003571
|
24 |
王辉,张利娟,杨芳. 半乳糖凝集素-9和T细胞免疫球蛋白黏蛋白分子3在口腔扁平苔藓和口腔鳞状细胞癌组织中的表达及临床意义[J]. 癌症进展,2020,18(6):576-579.
|
25 |
田绣云,周美云,韩瑞,等. 涎腺腺样囊性癌的临床特征及预后分析[J]. 医学研究杂志,2023,52(6):108-111,116.
|