实用医学杂志 ›› 2024, Vol. 40 ›› Issue (4): 575-579.doi: 10.3969/j.issn.1006-5725.2024.04.024
韩英妹1,李一杰1,张衡1,吕静1,张仪1,乔英博1,林楠1,徐慧勇1,王丰2(
)
收稿日期:2023-07-19
出版日期:2024-02-25
发布日期:2024-03-08
通讯作者:
王丰
E-mail:wfzmy123@163.com
基金资助:
Yingmei HAN1,Yijie LI1,Heng ZHANG1,Jing LV1,Yi ZHANG1,Yingbo QIAO1,Nan LIN1,Huiyong XU1,Feng. WANG2(
)
Received:2023-07-19
Online:2024-02-25
Published:2024-03-08
Contact:
Feng. WANG
E-mail:wfzmy123@163.com
摘要:
随着老龄化时代的到来,阿尔茨海默病(Alzheimer's disease,AD)逐渐成为困扰老年人的主要疾病。AD是一种与认知功能障碍相关的神经退行性疾病,在AD患者中,大脑网络连接遭到破坏,同时其拓扑属性也受到影响,导致解剖和功能连接的耦合分解。解剖连接可通过结构磁共振和弥散张量成像来追踪和评估;而功能连接则基于功能磁共振成像来检测其连接情况。本文借鉴以往学者的研究成果,总结AD的研究现状,旨在讨论AD患者大尺度脑网络改变的影像学特征,为广大研究者提供科学客观的AD预测及早期诊断的影像学标志物,以及未来研究思路。
中图分类号:
韩英妹,李一杰,张衡,吕静,张仪,乔英博,林楠,徐慧勇,王丰. 基于MRI分析阿尔茨海默病大尺度脑网络研究进展[J]. 实用医学杂志, 2024, 40(4): 575-579.
Yingmei HAN,Yijie LI,Heng ZHANG,Jing LV,Yi ZHANG,Yingbo QIAO,Nan LIN,Huiyong XU,Feng. WANG. Research progress of large-scale brain network of Alzheimer’s disease based on MRI analysis[J]. The Journal of Practical Medicine, 2024, 40(4): 575-579.
| 1 |
BACHMANN T, SCHROETER M L, CHEN K, et al. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer's Disease[J]. Neuroimage Clin, 2023, 38: 103371. doi:10.1016/j.nicl.2023.103371
doi: 10.1016/j.nicl.2023.103371 |
| 2 |
KRESS G T, POPA E S, THOMPSON P M, et al. Preliminary validation of a structural magnetic resonance imaging metric for tracking dementia-related neurodegeneration and future decline[J]. Neuroimage Clin, 2023, 39: 103458. doi:10.1016/j.nicl.2023.103458
doi: 10.1016/j.nicl.2023.103458 |
| 3 |
FENG J, ZHANG S W, CHEN L. Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(3): 1627-1639. doi:10.1109/tcbb.2021.3051177
doi: 10.1109/tcbb.2021.3051177 |
| 4 |
ZHANG Q, YANG X, SUN Z. Classification of Alzheimer's disease progression based on sMRI using gray matter volume and lateralization index[J]. PLoS One, 2022, 17(3): e0262722. doi:10.1371/journal.pone.0262722
doi: 10.1371/journal.pone.0262722 |
| 5 |
ZHANG T, LIAO Q, ZHANG D, et al. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach[J]. Front Aging Neurosci, 2021, 13: 688926. doi:10.3389/fnagi.2021.688926
doi: 10.3389/fnagi.2021.688926 |
| 6 | 朱斌斌, 周彦伶, 金陆飞, 等. 基于MRI深度学习的阿尔茨海默病和轻度认知功能障碍智能诊断:方法与应用[J]. 中国神经精神疾病杂志, 2022, 48(4): 251-256. |
| 7 |
LIAN C, LIU M, ZHANG J, et al. Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(4): 880-893. doi:10.1109/tpami.2018.2889096
doi: 10.1109/tpami.2018.2889096 |
| 8 |
覃智威, 刘钊, 陆允敏, 等. 基于广义卷积神经网络的阿尔茨海默病多模态磁共振图像分类方法研究[J]. 生物医学工程学杂志, 2023, 40(2): 217-225. doi:10.7507/1001-5515.202212046
doi: 10.7507/1001-5515.202212046 |
| 9 |
LI W, LIN X, CHEN X. Detecting Alzheimer's disease Based on 4D fMRI: An exploration under deep learning framework[J]. Neurocomputing, 2020, 388: 280-287. doi:10.1016/j.neucom.2020.01.053
doi: 10.1016/j.neucom.2020.01.053 |
| 10 |
TANVEER M, RASHID A H, GANAIE M A, et al. Classification of Alzheimer's Disease Using Ensemble of Deep Neural Networks Trained Through Transfer Learning[J]. IEEE J Biomed Health Inform, 2022, 26(4): 1453-1463. doi:10.1109/jbhi.2021.3083274
doi: 10.1109/jbhi.2021.3083274 |
| 11 |
CHEN Q, ABRIGO J, DENG M, et al. Structural network topology reveals higher brain resilience in individuals with preclinical Alzheimer's disease[J]. Brain Connect, 2023, 13(9):553-562. doi:10.1089/brain.2023.0013
doi: 10.1089/brain.2023.0013 |
| 12 |
付修威, 张瑜, 李彤彤, 等. 神经突方向离散度和密度成像结合机器学习对遗忘型轻度认知障碍脑微观结构的研究[J]. 临床放射学杂志, 2022, 41(7): 1239-1245. doi:10.3969/j.issn.1001-9324.2022.7.lcfsxzz202207010
doi: 10.3969/j.issn.1001-9324.2022.7.lcfsxzz202207010 |
| 13 |
韦志豪, 王红. 磁共振神经突方向离散度和密度成像在阿尔茨海默症中的研究进展[J]. 磁共振成像, 2021, 12(4): 103-105. doi:10.12015/issn.1674-8034.2021.04.026
doi: 10.12015/issn.1674-8034.2021.04.026 |
| 14 |
HOURIA L, BELKHAMSA N, CHERFA A, et al. Multi-modality MRI for Alzheimer's disease detection using deep learning[J]. Phys Eng Sci Med, 2022, 45(4): 1043-1053. doi:10.1007/s13246-022-01165-9
doi: 10.1007/s13246-022-01165-9 |
| 15 | 徐晨靖, 司亚妮, 史春宇, 等. 多模态MRI在阿尔茨海默病早期诊断中的应用研究进展[J]. 甘肃医药, 2021,40(8): 682-683,692. |
| 16 |
KIM J S, LEE H J, LEE S, et al. Conductive Hearing Loss Aggravates Memory Decline in Alzheimer Model Mice[J]. Front Neurosci, 2020, 14: 843. doi:10.3389/fnins.2020.00843
doi: 10.3389/fnins.2020.00843 |
| 17 |
MOLLOY E N, BINETTE A P, MARQUARDT J, et al. The interplay between functional MRI measures of episodic memory and CSF measures of tau in healthy adults at risk of Alzheimer’s Disease[J]. Alzheimers Dement, 2022, 18(S6): e069197. doi:10.1002/alz.069197
doi: 10.1002/alz.069197 |
| 18 |
OLAJIDE O J, SUVANTO M E, CHAPMAN C A. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease[J]. Biol Open, 2021, 10(1):bio056796. doi:10.1242/bio.056796
doi: 10.1242/bio.056796 |
| 19 |
HUANG J, BEACH P, BOZOKI A, et al. Alzheimer's Disease Progressively Reduces Visual Functional Network Connectivity[J]. J Alzheimers Dis Rep, 2021, 5(1): 549-562. doi:10.3233/adr-210017
doi: 10.3233/adr-210017 |
| 20 |
CHEN X, ONUR O A, RICHTER N, et al. Concordance of Intrinsic Brain Connectivity Measures Is Disrupted in Alzheimer's Disease[J]. Brain Connect, 2023,13(6):344-355. doi:10.1089/brain.2020.0918
doi: 10.1089/brain.2020.0918 |
| 21 |
FOROUZANNEZHAD P, ABBASPOUR A, FANG C, et al. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease[J]. J Neurosci Methods, 2019,317:121-140. doi:10.1016/j.jneumeth.2018.12.012
doi: 10.1016/j.jneumeth.2018.12.012 |
| 22 |
SUPEKAR K, MENON V, RUBIN D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease[J]. PLoS Comput Biol, 2008, 4(6): e1000100. doi:10.1371/journal.pcbi.1000100
doi: 10.1371/journal.pcbi.1000100 |
| 23 |
DE WAAL H, STAM C J, BLANKENSTEIN M A, et al. EEG abnormalities in early and late onset Alzheimer's disease: understanding heterogeneity[J]. J Neurol Neurosurg Psychiatry, 2011, 82(1): 67-71. doi:10.1136/jnnp.2010.216432
doi: 10.1136/jnnp.2010.216432 |
| 24 | FATHIAN A, JAMALI Y, RAOUFY M R, et al. The trend of disruption in the functional brain network topology of Alzheimer's disease[J]. Sci Rep, 2022, 12(1): 14998. |
| 25 |
ZHANG H, CHIU P W, IP I, et al. Small-World Networks and Their Relationship With Hippocampal Glutamine/Glutamate Concentration in Healthy Adults With Varying Genetic Risk for Alzheimer's Disease[J]. J Magn Reson Imaging, 2021, 54(3): 952-961. doi:10.1002/jmri.27632
doi: 10.1002/jmri.27632 |
| 26 | 王恒. 阿尔茨海默病患者脑网络拓扑属性与功能连接模式研究 [D]. 曲阜:曲阜师范大学, 2020. |
| 27 |
WANG Z, XIN J, WANG Z, et al. Brain functional network modeling and analysis based on fMRI: a systematic review[J]. Cogn Neurodyn, 2021, 15(3): 389-403. doi:10.1007/s11571-020-09630-5
doi: 10.1007/s11571-020-09630-5 |
| 28 |
ZINK N, MUCKSCHEL M, BESTE C. Resting-state EEG Dynamics Reveals Differences in Network Organization and its Fluctuation between Frequency Bands[J]. Neuroscience, 2021, 453: 43-56. doi:10.1016/j.neuroscience.2020.11.037
doi: 10.1016/j.neuroscience.2020.11.037 |
| 29 |
AHMADI H, FATEMIZADEH E, MOTIE-NASRABADI A. Identifying brain functional connectivity alterations during different stages of Alzheimer's disease[J]. Int J Neurosci, 2022, 132(10): 1005-1013. doi:10.1080/00207454.2020.1860037
doi: 10.1080/00207454.2020.1860037 |
| 30 |
MIRAGLIA F, VECCHIO F, MARRA C, et al. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia[J]. Int J Neural Syst, 2020, 30(2): 2050004. doi:10.1142/s0129065720500045
doi: 10.1142/s0129065720500045 |
| 31 |
HOJJATI S H, FEIZ F, OZORIA S, et al. Topographical Overlapping of the Amyloid-beta and Tau Pathologies in the Default Mode Network Predicts Alzheimer's Disease with Higher Specificity[J]. J Alzheimers Dis, 2021, 83(1): 407-421. doi:10.3233/jad-210419
doi: 10.3233/jad-210419 |
| 32 |
ZANG F, ZHU Y, LIU X, et al. Polygenic Effects of the Lipid Metabolic Pathway Accelerated Pathological Changes and Disrupted Default Mode Network Trajectory Across the Alzheimer's Disease Spectrum[J]. J Clin Psychiatry, 2021, 82(6):20m13739. doi:10.4088/jcp.20m13739
doi: 10.4088/jcp.20m13739 |
| 33 |
SENDI M S E, ZENDEHROUH E, ELLIS C A, et al. The link between static and dynamic brain functional network connectivity and genetic risk of Alzheimer's disease[J]. Neuroimage Clin, 2023, 37: 103363. doi:10.1016/j.nicl.2023.103363
doi: 10.1016/j.nicl.2023.103363 |
| 34 |
CANARIO N, JORGE L, MARTINS R, et al. Dual PET-fMRI reveals a link between neuroinflammation, amyloid binding and compensatory task-related brain activity in Alzheimer's disease[J]. Commun Biol, 2022, 5(1): 804. doi:10.1038/s42003-022-03761-7
doi: 10.1038/s42003-022-03761-7 |
| 35 |
XING J, JIA J, WU X, et al. A Spatiotemporal Brain Network Analysis of Alzheimer's Disease Based on Persistent Homology[J]. Front Aging Neurosci, 2022, 14: 788571. doi:10.3389/fnagi.2022.788571
doi: 10.3389/fnagi.2022.788571 |
| 36 |
王中阳, 信俊昌, 汪新蕾, 等. 多频段脑功能网络融合的阿尔茨海默病分类[J]. 小型微型计算机系统, 2021, 42(1): 208-212. doi:10.3969/j.issn.1000-1220.2021.01.035
doi: 10.3969/j.issn.1000-1220.2021.01.035 |
| 37 |
LUO Y, SUN T, MA C, et al. Alterations of Brain Networks in Alzheimer's Disease and Mild Cognitive Impairment: A Resting State fMRI Study Based on a Population-specific Brain Template[J]. Neuroscience, 2021, 452: 192-207. doi:10.1016/j.neuroscience.2020.10.023
doi: 10.1016/j.neuroscience.2020.10.023 |
| 38 |
ZHANG Y, JIANG X, QIAO L, et al. Modularity-Guided Functional Brain Network Analysis for Early-Stage Dementia Identification[J]. Front Neurosci, 2021, 15: 720909. doi:10.3389/fnins.2021.720909
doi: 10.3389/fnins.2021.720909 |
| 39 |
NG A S L, WANG J, NG K K, et al. Distinct network topology in Alzheimer's disease and behavioral variant frontotemporal dementia[J]. Alzheimers Res Ther, 2021, 13(1): 13. doi:10.1186/s13195-020-00752-w
doi: 10.1186/s13195-020-00752-w |
| 40 |
LI W, ZHAO J, SHEN C, et al. Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis[J]. Front Neuroinform, 2022, 16: 886365. doi:10.3389/fninf.2022.886365
doi: 10.3389/fninf.2022.886365 |
| 41 |
TSENG P T, CHEN Y W, ZENG B Y, et al. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials[J]. Alzheimers Res Ther, 2023, 15(1): 20. doi:10.1186/s13195-023-01164-2
doi: 10.1186/s13195-023-01164-2 |
| 42 |
王思翔, 曾红梅, 李扬娜, 等. 诊断阿尔茨海默病潜在生物标志物的研究进展[J]. 实用医学杂志, 2019, 35(7): 1173-1176. doi:10.3969/j.issn.1006-5725.2019.07.037
doi: 10.3969/j.issn.1006-5725.2019.07.037 |
| [1] | 黄华春,罗翠蜜,邱卓妍,郑金瓯. 不同病程颞叶癫痫患者体素镜像同伦连接分析[J]. 实用医学杂志, 2024, 40(17): 2401-2405. |
| [2] | 王頔,廖旦,刘远成,徐睿,段庆红. 基于静息态磁共振分析首发抑郁症伴童年创伤全脑局部一致性变化[J]. 实用医学杂志, 2024, 40(16): 2311-2315. |
| [3] | 申杰,徐桂华. 阿尔茨海默病与血脑屏障的相关性研究进展[J]. 实用医学杂志, 2024, 40(11): 1602-1606. |
| [4] | 曾哲,罗琳,陈强,侯斯琦,蒋圣哲. 急性轻度创伤性脑损伤与记忆障碍相关默认模式网络分析[J]. 实用医学杂志, 2024, 40(10): 1412-1417. |
| [5] | 梁璇,慕静然,骆延,徐陶,曾俊伟. CRMP2磷酸化参与阿尔茨海默病的机制研究进展[J]. 实用医学杂志, 2024, 40(10): 1467-1472. |
| [6] | 张凤林 舒红燕 任蕾蕾 严川 刘军委 缪光现 成先柄 . 改良五禽戏治疗老年脑卒中患者步态及平衡功能障碍的疗效及基于功能磁共振的脑机制研究 [J]. 实用医学杂志, 2023, 39(9): 1174-1178. |
| [7] | 吕小利, 陈义磊 谭文莉 缪晚虹 . 正常人眼睫状肌不同调节负荷下的大脑皮层激活状态 [J]. 实用医学杂志, 2023, 39(6): 706-712. |
| [8] | 赵红 李潇 王翠 . 关注少突胶质细胞:阿尔茨海默病治疗的新靶点[J]. 实用医学杂志, 2023, 39(13): 1595-1599. |
| [9] | 蔡陆威 陶陆阳 高原. 白细胞介素⁃38在中枢神经系统疾病中的作用及潜在性机制研究进展[J]. 实用医学杂志, 2022, 38(4): 511-515. |
| [10] | 李俊彦 余梦擎 杨琳琳 蔡钰莹 李友 杨宇. 阿尔茨海默病与microRNA⁃206基因多态性的关系[J]. 实用医学杂志, 2022, 38(20): 2545-2548. |
| [11] | 郝婧雯 邓炎尧 谢君 万奇 . microRNA⁃9⁃5p通过抑制Tau磷酸化参与阿尔茨海默病的机制[J]. 实用医学杂志, 2022, 38(18): 2296-2302. |
| [12] | 王兆涛 徐如祥 马全红 王业忠 姬云翔 . 过表达精神分裂断裂基因1对APP/PS1转基因阿尔茨海默病小鼠突触可塑性及学习记忆能力的改善 [J]. 实用医学杂志, 2021, 37(9): 1117-1126. |
| [13] | 周珂轩 梁昊岳 孔晓冬. 拉曼光谱技术与神经退行性疾病研究进展 [J]. 实用医学杂志, 2021, 37(22): 2950-2954. |
| [14] | 唐小娟 熊妍希 郗磊. 颞下颌关节紊乱病疼痛的脑结构磁共振分析和中枢机制研究 [J]. 实用医学杂志, 2021, 37(21): 2757-2763. |
| [15] | 龙启佳, 吕宗夏 , 史珂, 黎春燕, 郑金瓯. 抗⁃N⁃甲基⁃D⁃天冬氨酸受体脑炎患者海马体的体素形态学及功能连接分析 [J]. 实用医学杂志, 2021, 37(18): 2366-2370. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

