1 |
BACHMANN T, SCHROETER M L, CHEN K, et al. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer's Disease[J]. Neuroimage Clin, 2023, 38: 103371. doi:10.1016/j.nicl.2023.103371
doi: 10.1016/j.nicl.2023.103371
|
2 |
KRESS G T, POPA E S, THOMPSON P M, et al. Preliminary validation of a structural magnetic resonance imaging metric for tracking dementia-related neurodegeneration and future decline[J]. Neuroimage Clin, 2023, 39: 103458. doi:10.1016/j.nicl.2023.103458
doi: 10.1016/j.nicl.2023.103458
|
3 |
FENG J, ZHANG S W, CHEN L. Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(3): 1627-1639. doi:10.1109/tcbb.2021.3051177
doi: 10.1109/tcbb.2021.3051177
|
4 |
ZHANG Q, YANG X, SUN Z. Classification of Alzheimer's disease progression based on sMRI using gray matter volume and lateralization index[J]. PLoS One, 2022, 17(3): e0262722. doi:10.1371/journal.pone.0262722
doi: 10.1371/journal.pone.0262722
|
5 |
ZHANG T, LIAO Q, ZHANG D, et al. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach[J]. Front Aging Neurosci, 2021, 13: 688926. doi:10.3389/fnagi.2021.688926
doi: 10.3389/fnagi.2021.688926
|
6 |
朱斌斌, 周彦伶, 金陆飞, 等. 基于MRI深度学习的阿尔茨海默病和轻度认知功能障碍智能诊断:方法与应用[J]. 中国神经精神疾病杂志, 2022, 48(4): 251-256.
|
7 |
LIAN C, LIU M, ZHANG J, et al. Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(4): 880-893. doi:10.1109/tpami.2018.2889096
doi: 10.1109/tpami.2018.2889096
|
8 |
覃智威, 刘钊, 陆允敏, 等. 基于广义卷积神经网络的阿尔茨海默病多模态磁共振图像分类方法研究[J]. 生物医学工程学杂志, 2023, 40(2): 217-225. doi:10.7507/1001-5515.202212046
doi: 10.7507/1001-5515.202212046
|
9 |
LI W, LIN X, CHEN X. Detecting Alzheimer's disease Based on 4D fMRI: An exploration under deep learning framework[J]. Neurocomputing, 2020, 388: 280-287. doi:10.1016/j.neucom.2020.01.053
doi: 10.1016/j.neucom.2020.01.053
|
10 |
TANVEER M, RASHID A H, GANAIE M A, et al. Classification of Alzheimer's Disease Using Ensemble of Deep Neural Networks Trained Through Transfer Learning[J]. IEEE J Biomed Health Inform, 2022, 26(4): 1453-1463. doi:10.1109/jbhi.2021.3083274
doi: 10.1109/jbhi.2021.3083274
|
11 |
CHEN Q, ABRIGO J, DENG M, et al. Structural network topology reveals higher brain resilience in individuals with preclinical Alzheimer's disease[J]. Brain Connect, 2023, 13(9):553-562. doi:10.1089/brain.2023.0013
doi: 10.1089/brain.2023.0013
|
12 |
付修威, 张瑜, 李彤彤, 等. 神经突方向离散度和密度成像结合机器学习对遗忘型轻度认知障碍脑微观结构的研究[J]. 临床放射学杂志, 2022, 41(7): 1239-1245. doi:10.3969/j.issn.1001-9324.2022.7.lcfsxzz202207010
doi: 10.3969/j.issn.1001-9324.2022.7.lcfsxzz202207010
|
13 |
韦志豪, 王红. 磁共振神经突方向离散度和密度成像在阿尔茨海默症中的研究进展[J]. 磁共振成像, 2021, 12(4): 103-105. doi:10.12015/issn.1674-8034.2021.04.026
doi: 10.12015/issn.1674-8034.2021.04.026
|
14 |
HOURIA L, BELKHAMSA N, CHERFA A, et al. Multi-modality MRI for Alzheimer's disease detection using deep learning[J]. Phys Eng Sci Med, 2022, 45(4): 1043-1053. doi:10.1007/s13246-022-01165-9
doi: 10.1007/s13246-022-01165-9
|
15 |
徐晨靖, 司亚妮, 史春宇, 等. 多模态MRI在阿尔茨海默病早期诊断中的应用研究进展[J]. 甘肃医药, 2021,40(8): 682-683,692.
|
16 |
KIM J S, LEE H J, LEE S, et al. Conductive Hearing Loss Aggravates Memory Decline in Alzheimer Model Mice[J]. Front Neurosci, 2020, 14: 843. doi:10.3389/fnins.2020.00843
doi: 10.3389/fnins.2020.00843
|
17 |
MOLLOY E N, BINETTE A P, MARQUARDT J, et al. The interplay between functional MRI measures of episodic memory and CSF measures of tau in healthy adults at risk of Alzheimer’s Disease[J]. Alzheimers Dement, 2022, 18(S6): e069197. doi:10.1002/alz.069197
doi: 10.1002/alz.069197
|
18 |
OLAJIDE O J, SUVANTO M E, CHAPMAN C A. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease[J]. Biol Open, 2021, 10(1):bio056796. doi:10.1242/bio.056796
doi: 10.1242/bio.056796
|
19 |
HUANG J, BEACH P, BOZOKI A, et al. Alzheimer's Disease Progressively Reduces Visual Functional Network Connectivity[J]. J Alzheimers Dis Rep, 2021, 5(1): 549-562. doi:10.3233/adr-210017
doi: 10.3233/adr-210017
|
20 |
CHEN X, ONUR O A, RICHTER N, et al. Concordance of Intrinsic Brain Connectivity Measures Is Disrupted in Alzheimer's Disease[J]. Brain Connect, 2023,13(6):344-355. doi:10.1089/brain.2020.0918
doi: 10.1089/brain.2020.0918
|
21 |
FOROUZANNEZHAD P, ABBASPOUR A, FANG C, et al. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease[J]. J Neurosci Methods, 2019,317:121-140. doi:10.1016/j.jneumeth.2018.12.012
doi: 10.1016/j.jneumeth.2018.12.012
|
22 |
SUPEKAR K, MENON V, RUBIN D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease[J]. PLoS Comput Biol, 2008, 4(6): e1000100. doi:10.1371/journal.pcbi.1000100
doi: 10.1371/journal.pcbi.1000100
|
23 |
DE WAAL H, STAM C J, BLANKENSTEIN M A, et al. EEG abnormalities in early and late onset Alzheimer's disease: understanding heterogeneity[J]. J Neurol Neurosurg Psychiatry, 2011, 82(1): 67-71. doi:10.1136/jnnp.2010.216432
doi: 10.1136/jnnp.2010.216432
|
24 |
FATHIAN A, JAMALI Y, RAOUFY M R, et al. The trend of disruption in the functional brain network topology of Alzheimer's disease[J]. Sci Rep, 2022, 12(1): 14998.
|
25 |
ZHANG H, CHIU P W, IP I, et al. Small-World Networks and Their Relationship With Hippocampal Glutamine/Glutamate Concentration in Healthy Adults With Varying Genetic Risk for Alzheimer's Disease[J]. J Magn Reson Imaging, 2021, 54(3): 952-961. doi:10.1002/jmri.27632
doi: 10.1002/jmri.27632
|
26 |
王恒. 阿尔茨海默病患者脑网络拓扑属性与功能连接模式研究 [D]. 曲阜:曲阜师范大学, 2020.
|
27 |
WANG Z, XIN J, WANG Z, et al. Brain functional network modeling and analysis based on fMRI: a systematic review[J]. Cogn Neurodyn, 2021, 15(3): 389-403. doi:10.1007/s11571-020-09630-5
doi: 10.1007/s11571-020-09630-5
|
28 |
ZINK N, MUCKSCHEL M, BESTE C. Resting-state EEG Dynamics Reveals Differences in Network Organization and its Fluctuation between Frequency Bands[J]. Neuroscience, 2021, 453: 43-56. doi:10.1016/j.neuroscience.2020.11.037
doi: 10.1016/j.neuroscience.2020.11.037
|
29 |
AHMADI H, FATEMIZADEH E, MOTIE-NASRABADI A. Identifying brain functional connectivity alterations during different stages of Alzheimer's disease[J]. Int J Neurosci, 2022, 132(10): 1005-1013. doi:10.1080/00207454.2020.1860037
doi: 10.1080/00207454.2020.1860037
|
30 |
MIRAGLIA F, VECCHIO F, MARRA C, et al. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia[J]. Int J Neural Syst, 2020, 30(2): 2050004. doi:10.1142/s0129065720500045
doi: 10.1142/s0129065720500045
|
31 |
HOJJATI S H, FEIZ F, OZORIA S, et al. Topographical Overlapping of the Amyloid-beta and Tau Pathologies in the Default Mode Network Predicts Alzheimer's Disease with Higher Specificity[J]. J Alzheimers Dis, 2021, 83(1): 407-421. doi:10.3233/jad-210419
doi: 10.3233/jad-210419
|
32 |
ZANG F, ZHU Y, LIU X, et al. Polygenic Effects of the Lipid Metabolic Pathway Accelerated Pathological Changes and Disrupted Default Mode Network Trajectory Across the Alzheimer's Disease Spectrum[J]. J Clin Psychiatry, 2021, 82(6):20m13739. doi:10.4088/jcp.20m13739
doi: 10.4088/jcp.20m13739
|
33 |
SENDI M S E, ZENDEHROUH E, ELLIS C A, et al. The link between static and dynamic brain functional network connectivity and genetic risk of Alzheimer's disease[J]. Neuroimage Clin, 2023, 37: 103363. doi:10.1016/j.nicl.2023.103363
doi: 10.1016/j.nicl.2023.103363
|
34 |
CANARIO N, JORGE L, MARTINS R, et al. Dual PET-fMRI reveals a link between neuroinflammation, amyloid binding and compensatory task-related brain activity in Alzheimer's disease[J]. Commun Biol, 2022, 5(1): 804. doi:10.1038/s42003-022-03761-7
doi: 10.1038/s42003-022-03761-7
|
35 |
XING J, JIA J, WU X, et al. A Spatiotemporal Brain Network Analysis of Alzheimer's Disease Based on Persistent Homology[J]. Front Aging Neurosci, 2022, 14: 788571. doi:10.3389/fnagi.2022.788571
doi: 10.3389/fnagi.2022.788571
|
36 |
王中阳, 信俊昌, 汪新蕾, 等. 多频段脑功能网络融合的阿尔茨海默病分类[J]. 小型微型计算机系统, 2021, 42(1): 208-212. doi:10.3969/j.issn.1000-1220.2021.01.035
doi: 10.3969/j.issn.1000-1220.2021.01.035
|
37 |
LUO Y, SUN T, MA C, et al. Alterations of Brain Networks in Alzheimer's Disease and Mild Cognitive Impairment: A Resting State fMRI Study Based on a Population-specific Brain Template[J]. Neuroscience, 2021, 452: 192-207. doi:10.1016/j.neuroscience.2020.10.023
doi: 10.1016/j.neuroscience.2020.10.023
|
38 |
ZHANG Y, JIANG X, QIAO L, et al. Modularity-Guided Functional Brain Network Analysis for Early-Stage Dementia Identification[J]. Front Neurosci, 2021, 15: 720909. doi:10.3389/fnins.2021.720909
doi: 10.3389/fnins.2021.720909
|
39 |
NG A S L, WANG J, NG K K, et al. Distinct network topology in Alzheimer's disease and behavioral variant frontotemporal dementia[J]. Alzheimers Res Ther, 2021, 13(1): 13. doi:10.1186/s13195-020-00752-w
doi: 10.1186/s13195-020-00752-w
|
40 |
LI W, ZHAO J, SHEN C, et al. Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis[J]. Front Neuroinform, 2022, 16: 886365. doi:10.3389/fninf.2022.886365
doi: 10.3389/fninf.2022.886365
|
41 |
TSENG P T, CHEN Y W, ZENG B Y, et al. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials[J]. Alzheimers Res Ther, 2023, 15(1): 20. doi:10.1186/s13195-023-01164-2
doi: 10.1186/s13195-023-01164-2
|
42 |
王思翔, 曾红梅, 李扬娜, 等. 诊断阿尔茨海默病潜在生物标志物的研究进展[J]. 实用医学杂志, 2019, 35(7): 1173-1176. doi:10.3969/j.issn.1006-5725.2019.07.037
doi: 10.3969/j.issn.1006-5725.2019.07.037
|