1 |
TASAKA S, OHSHIMO S, TAKEUCHI M, et al. ARDS Clinical Practice Guideline 2021 [J]. J Intensive Care, 2022, 10(1): 32.
|
2 |
中国研究型医院学会危重医学专委会, 宁波诺丁汉大学GRADE中心. 中国成人急性呼吸窘迫综合征(ARDS)诊断与非机械通气治疗指南(2023) [J]. 中国研究型医院, 2023, 10(5): 9-24.
|
3 |
MATTHAY M A, ZEMANS R L, ZIMMERMAN G A, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis Primers, 2019, 5(1): 18. doi:10.1038/s41572-019-0069-0
doi: 10.1038/s41572-019-0069-0
|
4 |
袁静, 夏金婵, 郭晓琦, 等. 基于巨噬细胞可塑性的中药防治急性肺损伤的研究进展[J]. 实用医学杂志, 2022, 38(5): 644-649. doi:10.3969/j.issn.1006-5725.2022.05.023
doi: 10.3969/j.issn.1006-5725.2022.05.023
|
5 |
UDWADIA Z F, KOUL P A, RICHELDI L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake [J]. Lung India, 2021, 38(): S41-S47. doi:10.4103/lungindia.lungindia_818_20
doi: 10.4103/lungindia.lungindia_818_20
|
6 |
BUECHLER M B, FU W, TURLEY S J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer [J]. Immunity, 2021, 54(5): 903-915. doi:10.1016/j.immuni.2021.04.021
doi: 10.1016/j.immuni.2021.04.021
|
7 |
VICHARE R, JANJIC J M. Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential [J]. Inflammation,2022, 45(6): 2124-2141. doi:10.1007/s10753-022-01692-3
doi: 10.1007/s10753-022-01692-3
|
8 |
LI Z, NIU S, GUO B, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis [J]. Cell Prolif,2020, 53(12): e12939. doi:10.1111/cpr.12939
doi: 10.1111/cpr.12939
|
9 |
LIU S, ZHANG Z, WANG Y, et al. The chemokine CCL1 facilitates pulmonary fibrosis by promoting macrophage migration and M2 polarization [J]. Int Immunopharmacol, 2023, 120: 110343. doi:10.1016/j.intimp.2023.110343
doi: 10.1016/j.intimp.2023.110343
|
10 |
NIE Y, ZHAI X, LI J, et al. NFATc3 Promotes Pulmonary Inflammation and Fibrosis by Regulating Production of CCL2 and CXCL2 in Macrophage [J]. Aging Dis, 2023,14(4):1441-1457.
|
11 |
罗益锋, 易慧, 黄鑫炎, 等. 敲低巨噬细胞移动抑制因子表达对人肺成纤维细胞增殖及迁移能力的影响[J]. 实用医学杂志, 2020, 36(6): 716-721. doi:10.3969/j.issn.1006-5725.2020.06.003
doi: 10.3969/j.issn.1006-5725.2020.06.003
|
12 |
LIU G, ZHAI H, ZHANG T, et al. New therapeutic strategies for IPF: Based on the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages [J]. Biomed Pharmacother, 2019, 118: 109230. doi:10.1016/j.biopha.2019.109230
doi: 10.1016/j.biopha.2019.109230
|
13 |
ZHOU X, FRANKLIN R A, ADLER M, et al. Circuit Design Features of a Stable Two-Cell System [J]. Cell, 2018, 172(4): 744-757.e717. doi:10.1016/j.cell.2018.01.015
doi: 10.1016/j.cell.2018.01.015
|
14 |
VIETTI G, LISON D, VAN DEN BRULE S. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP) [J]. Part Fibre Toxicol, 2016, 13: 11. doi:10.1186/s12989-016-0123-y
doi: 10.1186/s12989-016-0123-y
|
15 |
IVEY M J, KUWABARA J T, RIGGSBEE K L, et al. Platelet-derived growth factor receptor-α is essential for cardiac fibroblast survival [J]. Am J Physiol Heart Cir, 2019, 317(2): H330-H344. doi:10.1152/ajpheart.00054.2019
doi: 10.1152/ajpheart.00054.2019
|
16 |
YE Z, HU Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review) [J]. Int J Mol Med, 2021, 48(1):132. doi:10.3892/ijmm.2021.4965
doi: 10.3892/ijmm.2021.4965
|
17 |
CHEN J, TANG Y, ZHONG Y, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition [J]. Mol Ther, 2022, 30(9): 3017-3033. doi:10.1016/j.ymthe.2022.06.019
doi: 10.1016/j.ymthe.2022.06.019
|
18 |
米会会, 沈亚峰, 孙斌, 等. 瞬时感受器电位-香草素受体4和转化生长因子β1在牙龈瘤中的表达及意义[J]. 实用医学杂志, 2020, 36(09): 1193-1197. doi:10.3969/j.issn.1006-5725.2020.09.015
doi: 10.3969/j.issn.1006-5725.2020.09.015
|
19 |
FRANGOGIANNIS N. Transforming growth factor-β in tissue fibrosis [J]. J Exp Med, 2020, 217(3): e20190103. doi:10.1084/jem.20190103
doi: 10.1084/jem.20190103
|
20 |
WANG J, XU L, XIANG Z, et al. Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206(+) M2-like macrophage polarization [J]. Cell Death Dis, 2020, 11(2): 136. doi:10.1038/s41419-020-2329-z
doi: 10.1038/s41419-020-2329-z
|
21 |
POOLE J A, NORDGREN T M, HEIRES A J, et al. Amphiregulin modulates murine lung recovery and fibroblast function following exposure to agriculture organic dust [J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1): L180-L191. doi:10.1152/ajplung.00039.2019
doi: 10.1152/ajplung.00039.2019
|
22 |
MINUTTI C M, MODAK R V, MACDONALD F, et al. A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation [J]. Immunity, 2019, 50(3): 645-654.e646. doi:10.1016/j.immuni.2019.01.008
doi: 10.1016/j.immuni.2019.01.008
|
23 |
ZHOU Y, LEE J Y, LEE C M, et al. Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-β-induced pulmonary fibrosis [J]. J Biol Chem, 2012, 287(50): 41991-42000. doi:10.1074/jbc.m112.356824
doi: 10.1074/jbc.m112.356824
|
24 |
WANG J, ZHANG X, LONG M, et al. Macrophage-derived GPNMB trapped by fibrotic extracellular matrix promotes pulmonary fibrosis [J]. Commun Biol,2023, 6(1): 136. doi:10.1038/s42003-022-04333-5
doi: 10.1038/s42003-022-04333-5
|
25 |
BELLOMO A, MONDOR I, SPINELLI L, et al. Reticular Fibroblasts Expressing the Transcription Factor WT1 Define a Stromal Niche that Maintains and Replenishes Splenic Red Pulp Macrophages [J]. Immunity, 2020, 53(1): 127-142.e127. doi:10.1016/j.immuni.2020.06.008
doi: 10.1016/j.immuni.2020.06.008
|
26 |
MEZIANI L, MONDINI M, PETIT B, et al. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages [J]. Eur Respir J,2018, 51(3):1702120. doi:10.1183/13993003.02120-2017
doi: 10.1183/13993003.02120-2017
|
27 |
ORDENTLICH P. Clinical evaluation of colony-stimulating factor 1 receptor inhibitors [J]. Semin Immunol, 2021, 54: 101514. doi:10.1016/j.smim.2021.101514
doi: 10.1016/j.smim.2021.101514
|
28 |
KALDER N C, STADLER C, FORSGREN M, et al. CCL2 mediates anti-fibrotic effects in human fibroblasts independently of CCR2 [J]. Int Immunopharmacol, 2014, 20(1): 66-73. doi:10.1016/j.intimp.2014.02.020
doi: 10.1016/j.intimp.2014.02.020
|
29 |
DENG X, XU M, YUAN C, et al. Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-κB and activator protein-1 [J]. Int J Biochem Cell Biol, 2013, 45(7): 1366-1376. doi:10.1016/j.biocel.2013.04.003
doi: 10.1016/j.biocel.2013.04.003
|
30 |
GOLEC P, BERNATOWICZ P L, TOKAJUK G, et al. Histone deacetylases affect transcriptional regulation of CCL2 and CXCL8 expression by pulmonary fibroblasts in vitro [J]. Adv Respir Med, 2017, 85(6): 307-312. doi:10.5603/arm.2017.0053
doi: 10.5603/arm.2017.0053
|
31 |
DUFOUR A M, ALVAREZ M, RUSSO B, et al. Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1 [J]. Front Immunol, 2018, 9: 1865. doi:10.3389/fimmu.2018.01865
doi: 10.3389/fimmu.2018.01865
|
32 |
MA F, LI Y, JIA L, et al. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II [J]. PLoS One, 2012, 7(5): e35144. doi:10.1371/journal.pone.0035144
doi: 10.1371/journal.pone.0035144
|