1 |
HUANG X, XIE M, XIE Y, et al. The roles of osteocytes in alveolar bone destruction in periodontitis [J]. J Transl Med, 2020, 18(1): 479. doi:10.1186/s12967-020-02664-7
doi: 10.1186/s12967-020-02664-7
|
2 |
王兴. 第四次全国口腔流行病学调查报告 [M]. 北京: 人民卫生出版社, 2018.
|
3 |
MARTÍNEZ-GARCÍA M, HERNÁNDEZ-LEMUS E. Periodontal Inflammation and Systemic Diseases: An Overview [J]. Frontiers in Physiology, 2021, 12: 709438. doi:10.3389/fphys.2021.709438
doi: 10.3389/fphys.2021.709438
|
4 |
YU N, VAN DYKE T E. Periodontitis: A host mediated disruption of microbial homeostasis [J]. Curr Oral Health Rep, 2020, 7(1): 3-11. doi:10.1007/s40496-020-00256-4
doi: 10.1007/s40496-020-00256-4
|
5 |
周征,齐霞,杨冬茹. 牙周炎的宿主反应调节治疗[J]. 口腔疾病防治, 2019, 27(11): 681-688.
|
6 |
ZHANG P, WANG Q, NIE L, et al. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation [J]. J Biol Chem, 2019, 294(49): 18807-18819. doi:10.1074/jbc.ra119.010648
doi: 10.1074/jbc.ra119.010648
|
7 |
WANG Q, NIE L, ZHAO P, et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging [J]. Int J Oral Sci, 2021, 13(1): 11. doi:10.1038/s41368-021-00116-6
doi: 10.1038/s41368-021-00116-6
|
8 |
LUCAS V, CAVADAS C, ALEXANDRA AVELEIRA C. Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies [J]. Pharmacol Rev, 2023, 75(4): 675-713. doi:10.1124/pharmrev.122.000622
doi: 10.1124/pharmrev.122.000622
|
9 |
安靖雯,冯俊云,饶磊,等. 细胞衰老与瘢痕纤维化的关系研究进展[J]. 实用医学杂志,2024,40(12):1749-1754.
|
10 |
HU L, LI H, ZI M, et al. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development [J]. Front Cell Dev Biol, 2022, 10: 822816. doi:10.3389/fcell.2022.822816
doi: 10.3389/fcell.2022.822816
|
11 |
SHEN M, FU J, ZHANG Y, et al. A novel senolytic drug for pulmonary fibrosis: BTSA1 targets apoptosis of senescent myofibroblasts by activating BAX [J]. Aging Cell, 2024,23(9): e14229. doi:10.1111/acel.14229
doi: 10.1111/acel.14229
|
12 |
CHEN J, CHEN K H, WANG L M, et al. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy [J]. Cell Death Dis, 2022, 13(6): 522. doi:10.1038/s41419-022-04972-w
doi: 10.1038/s41419-022-04972-w
|
13 |
PRATTICHIZZO F, DE NIGRIS V, MANCUSO E,et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages [J]. Redox Biol, 2018, 15: 170-181. doi:10.1016/j.redox.2017.12.001
doi: 10.1016/j.redox.2017.12.001
|
14 |
YUE Z, NIE L, JI N, et al. Hyperglycaemia aggravates periodontal inflamm-aging by promoting SETDB1-mediated LINE-1 de-repression in macrophages [J]. J Clin Periodontol, 2023, 50(12): 1685-1696. doi:10.1111/jcpe.13871
doi: 10.1111/jcpe.13871
|
15 |
谭茗,李雯, 孙婴宁. 转录因子PU.1的最新研究进展 [J]. 中国细胞生物学学报,2021,43(1): 249-262.
|
16 |
WANG T, WANG J, SUN T, et al. PU.1 regulates osteoarthritis progression via CSF1R in synovial cells [J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1871(1): 167525. doi:10.1016/j.bbadis.2024.167525
doi: 10.1016/j.bbadis.2024.167525
|
17 |
LAUDANSKI K, ZAWADKA M, POLOSAK J, et al. Acquired immunological imbalance after surgery with cardiopulmonary bypass due to epigenetic over-activation of PU.1/M-CSF [J]. J Transl Med,2018,16(1):143. doi:10.1186/s12967-018-1518-3
doi: 10.1186/s12967-018-1518-3
|
18 |
ZHANG K, WANG S, WANG Z, et al. Critical roles of PU.1/cathepsin S activation in regulating inflammatory responses of macrophages in periodontitis [J]. J Periodontal Res, 2023, 58(5): 939-947. doi:10.1111/jre.13153
doi: 10.1111/jre.13153
|
19 |
TU J, CHEN W, FANG Y, et al. PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes [J]. Ann Rheum Dis, 2023, 82(2): 198-211. doi:10.1136/ard-2022-222708
doi: 10.1136/ard-2022-222708
|
20 |
JENAL M, BATLINER J, REDDY V A, et al. The anti-apoptotic gene BCL2A1 is a novel transcriptional target of PU.1 [J]. Leukemia, 2010, 24(5): 1073-1076. doi:10.1038/leu.2010.26
doi: 10.1038/leu.2010.26
|
21 |
RIDINGER-SAISON M, EVANNO E, GALLAIS I, et al. Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia [J]. Cell Death Differ, 2013, 20(9): 1268-1278. doi:10.1038/cdd.2013.88
doi: 10.1038/cdd.2013.88
|
22 |
PIMENOVA A A, HERBINET M, GUPTA I, et al. Alzheimer's-associated PU.1 expression levels regulate microglial inflammatory response [J]. Neurobiol Dis, 2021, 148:105217. doi:10.1016/j.nbd.2020.105217
doi: 10.1016/j.nbd.2020.105217
|
23 |
DELESTRÉ L, CUI H, ESPOSITO M, et al. Senescence is a Spi1-induced anti-proliferative mechanism in primary hematopoietic cells [J]. Haematologica, 2017, 102(11): 1850-1860. doi:10.3324/haematol.2016.157636
doi: 10.3324/haematol.2016.157636
|
24 |
AQUINO-MARTINEZ R, KHOSLA S, FARR J N,et al. Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem?[J]. Int J Mol Sci,2020, 21(20):7441. doi:10.3390/ijms21207441
doi: 10.3390/ijms21207441
|
25 |
BUDAMAGUNTA V, MANOHAR-SINDHU S, YANG Y, et al. Senescence-associated hyper-activation to inflammatory stimuli in vitro [J]. Aging (Albany NY), 2021, 13(15): 19088-19107. doi:10.18632/aging.203396
doi: 10.18632/aging.203396
|
26 |
ANTONY-DEBRÉ I, PAUL A,LEITE, J et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia [J]. J Clin Invest, 2017, 127(12): 4297. doi:10.1172/jci92504
doi: 10.1172/jci92504
|
27 |
BAAR M P, BRANDT R M C, PUTAVET D A, et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging [J]. Cell,2017, 169(1): 132-147. doi:10.1016/j.cell.2017.02.031
doi: 10.1016/j.cell.2017.02.031
|
28 |
YOSEF R, PILPEL N, TOKARSKY-AMIEL R, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL [J]. Nature Communications, 2016, 7: 11190. doi:10.1038/ncomms11190
doi: 10.1038/ncomms11190
|
29 |
HAIMOVICI A, RUPP V, AMER T,et al. The caspase-activated DNase promotes cellular senescence [J]. EMBO J, 2024, 43(16): 3523-3544. doi:10.1038/s44318-024-00163-9
doi: 10.1038/s44318-024-00163-9
|
30 |
HE Y, ZHANG X, CHANG J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity [J]. Nat Commun, 2020, 11(1): 1996. doi:10.1038/s41467-020-15838-0
doi: 10.1038/s41467-020-15838-0
|