实用医学杂志 ›› 2025, Vol. 41 ›› Issue (1): 1-6.doi: 10.3969/j.issn.1006-5725.2025.01.001
• 临床新进展 •
收稿日期:
2024-06-05
出版日期:
2025-01-10
发布日期:
2025-01-14
通讯作者:
郑可
E-mail:kellyz_0_67@163.com
作者简介:
基金资助:
Jiahui WANG,Ke ZHENG(),Xuemei LI
Received:
2024-06-05
Online:
2025-01-10
Published:
2025-01-14
Contact:
Ke ZHENG
E-mail:kellyz_0_67@163.com
摘要:
肾脏疾病是全球范围内的重要公共健康问题,相关医疗负担逐年增加。脂代谢紊乱在多种肾脏病的发生和进展中起着关键作用。鉴于脂质种类的多样性和代谢途径的复杂性,传统的研究手段往往难以全面阐释脂质在肾脏疾病中的深层作用。在这一背景下,脂质组学,即系统性分析生物样本中脂质分子及其代谢变化的科学,展现出其独特的研究价值和应用前景。该文综述了近年来脂质组学在糖尿病肾病、慢性肾脏病、急性肾损伤、多囊肾等中的最新研究结果,并对临床应用面临的挑战和未来研究方向进行了探讨。
中图分类号:
王佳慧,郑可,李雪梅. 脂质组学在肾脏疾病中的应用与进展[J]. 实用医学杂志, 2025, 41(1): 1-6.
Jiahui WANG,Ke ZHENG,Xuemei LI. Applications and advances of lipidomics in kidney disease[J]. The Journal of Practical Medicine, 2025, 41(1): 1-6.
1 |
FAHY E, SUBRAMANIAM S, BROWN H A, et al. A comprehensive classification system for lipids [J]. J Lipid Res, 2005, 46(5): 839-861. doi:10.1194/jlr.e400004-jlr200
doi: 10.1194/jlr.e400004-jlr200 |
2 |
XU J, HUANG X. Lipid Metabolism at Membrane Contacts: Dynamics and Functions Beyond Lipid Homeostasis [J]. Front Cell Dev Biol, 2020, 8: 615856. doi:10.3389/fcell.2020.615856
doi: 10.3389/fcell.2020.615856 |
3 |
YOON J H, SEO Y, JO Y S, et al. Brain lipidomics: From functional landscape to clinical significance [J]. Sci Adv, 2022, 8(37): eadc9317. doi:10.1126/sciadv.adc9317
doi: 10.1126/sciadv.adc9317 |
4 |
SABBAGH M N, POPE E, CORDES L, et al. Therapeutic considerations for APOE and TOMM40 in Alzheimers disease: A tribute to Allen Roses MD [J]. Expert Opin Investig Drugs, 2021, 30(1): 39-44. doi:10.1080/13543784.2021.1849138
doi: 10.1080/13543784.2021.1849138 |
5 |
HANRIEDER J. Lipid imaging of Alzheimer's disease pathology [J]. J Neurochem, 2024,168(7):1175-1178. doi:10.1111/jnc.16079
doi: 10.1111/jnc.16079 |
6 |
SKRHA J JR. Diabetes, Lipids, and CV Risk [J]. Curr Atheroscler Rep, 2021, 23(3): 8. doi:10.1007/s11883-021-00905-8
doi: 10.1007/s11883-021-00905-8 |
7 |
CHAKRAVARTI B, AKHTAR SIDDIQUI J, ANTHONY SINHA R, et al. Targeting autophagy and lipid metabolism in cancer stem cells [J]. Biochem Pharmacol, 2023, 212: 115550. doi:10.1016/j.bcp.2023.115550
doi: 10.1016/j.bcp.2023.115550 |
8 |
FERENCE B A, GRAHAM I, TOKGOZOGLU L, et al. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series [J]. J Am Coll Cardiol, 2018, 72(10): 1141-1156. doi:10.1016/j.jacc.2018.06.046
doi: 10.1016/j.jacc.2018.06.046 |
9 |
FALABELLA M, VERNON H J, HANNA M G, et al. Cardiolipin, Mitochondria, and Neurological Disease [J]. Trends Endocrinol Metab, 2021, 32(4): 224-237. doi:10.1016/j.tem.2021.01.006
doi: 10.1016/j.tem.2021.01.006 |
10 |
CHEN W, WANG Q, ZHOU B, et al. Lipid Metabolism Profiles in Rheumatic Diseases [J]. Front Pharmacol, 2021, 12: 643520. doi:10.3389/fphar.2021.643520
doi: 10.3389/fphar.2021.643520 |
11 |
BREIDEN B, SANDHOFF K. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease [J]. Int J Mol Sci, 2020, 21(7):2566. doi:10.3390/ijms21072566
doi: 10.3390/ijms21072566 |
12 |
KISHIMOTO K, URADE R, OGAWA T, et al. Nondestructive quantification of neutral lipids by thin-layer chromatography and laser-fluorescent scanning: Suitable methods for "lipidome" analysis [J]. Biochem Biophys Res Commun, 2001, 281(3): 657-662. doi:10.1006/bbrc.2001.4404
doi: 10.1006/bbrc.2001.4404 |
13 |
AVELA H F, SIREN H. Advances in lipidomics [J]. Clin Chim Acta, 2020, 510: 123-141. doi:10.1016/j.cca.2020.06.049
doi: 10.1016/j.cca.2020.06.049 |
14 |
LU J, LAM S M, WAN Q, et al. High-Coverage Targeted Lipidomics Reveals Novel Serum Lipid Predictors and Lipid Pathway Dysregulation Antecedent to Type 2 Diabetes Onset in Normoglycemic Chinese Adults [J]. Diabetes Care, 2019, 42(11): 2117-2126. doi:10.2337/dc19-0100
doi: 10.2337/dc19-0100 |
15 |
UMANATH K, LEWIS J B. Update on Diabetic Nephropathy: Core Curriculum 2018 [J]. Am J Kidney Dis, 2018, 71(6): 884-895. doi:10.1053/j.ajkd.2017.10.026
doi: 10.1053/j.ajkd.2017.10.026 |
16 |
TOFTE N, SUVITAIVAL T, AHONEN L, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes [J]. Sci Rep, 2019, 9(1): 16398. doi:10.1038/s41598-019-52916-w
doi: 10.1038/s41598-019-52916-w |
17 |
AFSHINNIA F, RAJENDIRAN T M, HE C, et al. Circulating Free Fatty Acid and Phospholipid Signature Predicts Early Rapid Kidney Function Decline in Patients With Type 1 Diabetes [J]. Diabetes Care, 2021, 44(9): 2098-2106. doi:10.2337/dc21-0737
doi: 10.2337/dc21-0737 |
18 |
WANG W, LI T, LI Z, et al. Differential lipidomics of HK-2 cells and exosomes under high glucose stimulation [J]. Int J Med Sci, 2022, 19(2): 393-401. doi:10.7150/ijms.67326
doi: 10.7150/ijms.67326 |
19 |
YOSHIOKA K, HIRAKAWA Y, KURANO M, et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease [J]. Kidney Int, 2022, 101(3): 510-526. doi:10.1016/j.kint.2021.10.039
doi: 10.1016/j.kint.2021.10.039 |
20 |
HOU B, HE P, MA P, et al. Comprehensive Lipidome Profiling of the Kidney in Early-Stage Diabetic Nephropathy [J]. Front Endocrinol (Lausanne), 2020, 11: 359. doi:10.3389/fendo.2020.00359
doi: 10.3389/fendo.2020.00359 |
21 |
HAO Y, FAN Y, FENG J, et al. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease [J]. Cell Commun Signal, 2024, 22(1): 26. doi:10.1186/s12964-023-01399-4
doi: 10.1186/s12964-023-01399-4 |
22 |
YEUNG M H Y, LEUNG K L, CHOI L Y, et al. Lipidomic Analysis Reveals the Protection Mechanism of GLP-1 Analogue Dulaglutide on High-Fat Diet-Induced Chronic Kidney Disease in Mice [J]. Front Pharmacol, 2021, 12: 777395. doi:10.3389/fphar.2021.777395
doi: 10.3389/fphar.2021.777395 |
23 |
PEREZ-MARTI A, RAMAKRISHNAN S, LI J, et al. Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes [J]. Elife, 2022, 11:e74391. doi:10.7554/elife.74391.sa0
doi: 10.7554/elife.74391.sa0 |
24 |
ELWAKIEL A, MATHEW A, ISERMANN B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease [J]. Cardiovasc Res, 2024, 119(18): 2875-2883. doi:10.1093/cvr/cvad190
doi: 10.1093/cvr/cvad190 |
25 |
KOVESDY C P. Epidemiology of chronic kidney disease: an update 2022 [J]. Kidney Int Suppl (2011), 2022, 12(1): 7-11. doi:10.1016/j.kisu.2021.11.003
doi: 10.1016/j.kisu.2021.11.003 |
26 |
AFSHINNIA F, RAJENDIRAN T M, KARNOVSKY A, et al. Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency Cohort [J]. Kidney Int Rep, 2016, 1(4): 256-268. doi:10.1016/j.ekir.2016.08.007
doi: 10.1016/j.ekir.2016.08.007 |
27 |
LLUESA J H, LOPEZ-ROMERO L C, MONZO J J B, et al. Lipidic profiles of patients starting peritoneal dialysis suggest an increased cardiovascular risk beyond classical dyslipidemia biomarkers [J]. Sci Rep, 2022, 12(1): 16394. doi:10.1038/s41598-022-20757-9
doi: 10.1038/s41598-022-20757-9 |
28 |
王晓燕, 邹小义, 祝翔. 铁超载调控氧化性低密度脂蛋白诱导泡沫细胞促动脉粥样硬化活化的作用 [J]. 实用医学杂志, 2024, 40(3): 295-301. doi:10.3969/j.issn.1006-5725.2024.03.003
doi: 10.3969/j.issn.1006-5725.2024.03.003 |
29 |
SPEER T, RIDKER P M, VON ECKARDSTEIN A, et al. Lipoproteins in chronic kidney disease: From bench to bedside [J]. Eur Heart J, 2021, 42(22): 2170-2185. doi:10.1093/eurheartj/ehaa1050
doi: 10.1093/eurheartj/ehaa1050 |
30 |
CHEN Z, SHRESTHA R, YANG X, et al. Oxidative Stress and Lipid Dysregulation in Lipid Droplets: A Connection to Chronic Kidney Disease Revealed in Human Kidney Cells [J]. Antioxidants (Basel), 2022, 11(7):1387. doi:10.3390/antiox11071387
doi: 10.3390/antiox11071387 |
31 |
LIDGARD B, HOOFNAGLE A N, ZELNICK L R, et al. High-Density Lipoprotein Lipidomics in Chronic Kidney Disease [J]. Clin Chem, 2023, 69(3): 273-282. doi:10.1093/clinchem/hvac216
doi: 10.1093/clinchem/hvac216 |
32 |
NOH S A, KIM S M, PARK S H, et al. Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry [J]. J Proteome Res, 2019, 18(7): 2803-2812. doi:10.1021/acs.jproteome.9b00108
doi: 10.1021/acs.jproteome.9b00108 |
33 |
AFSHINNIA F, RAJENDIRAN T M, SONI T, et al. Impaired beta-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD [J]. J Am Soc Nephrol, 2018, 29(1): 295-306. doi:10.1681/asn.2017030350
doi: 10.1681/asn.2017030350 |
34 |
AFSHINNIA F, NAIR V, LIN J, et al. Increased lipogenesis and impaired beta-oxidation predict type 2 diabetic kidney disease progression in American Indians [J]. JCI Insight, 2019, 4(21):e130317. doi:10.1172/jci.insight.130317
doi: 10.1172/jci.insight.130317 |
35 |
DAI Y, CHEN Y, MO D, et al. Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease [J]. Commun Biol, 2023, 6(1): 907. doi:10.1038/s42003-023-05272-5
doi: 10.1038/s42003-023-05272-5 |
36 |
吴瑶, 宋囡, 贾连群. 丹参酮ⅡA对ApoE-/-小鼠肝脏脂质沉积及铁死亡相关蛋白表达的影响 [J]. 中国病理生理杂志, 2020, 36(7): 1261-1268. doi:10.3969/j.issn.1000-4718.2020.07.016
doi: 10.3969/j.issn.1000-4718.2020.07.016 |
37 |
VAN SMAALEN T C, ELLIS S R, MASCINI N E, et al. Rapid Identification of Ischemic Injury in Renal Tissue by Mass-Spectrometry Imaging [J]. Anal Chem, 2019, 91(5): 3575-3581. doi:10.1021/acs.analchem.8b05521
doi: 10.1021/acs.analchem.8b05521 |
38 |
RAO S, WALTERS K B, WILSON L, et al. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging [J]. Am J Physiol Renal Physiol, 2016, 310(10): F1136-F1147. doi:10.1152/ajprenal.00100.2016
doi: 10.1152/ajprenal.00100.2016 |
39 |
POYAN MEHR A, TRAN M T, RALTO K M, et al. De novo NAD(+) biosynthetic impairment in acute kidney injury in humans [J]. Nat Med, 2018, 24(9): 1351-1359. doi:10.1038/s41591-018-0138-z
doi: 10.1038/s41591-018-0138-z |
40 |
李晶, 陆芹芹, 崔艳飞. 血清PGC-1α水平在脓毒症致急性肾损伤诊断中的价值 [J]. 实用医学杂志, 2023, 39(4): 471-475. doi:10.3969/j.issn.1006-5725.2023.04.015
doi: 10.3969/j.issn.1006-5725.2023.04.015 |
41 |
TRAN M T, ZSENGELLER Z K, BERG A H, et al. PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection [J]. Nature, 2016, 531(7595): 528-532. doi:10.1038/nature17184
doi: 10.1038/nature17184 |
42 |
POPE L E, DIXON S J. Regulation of ferroptosis by lipid metabolism [J]. Trends Cell Biol, 2023, 33(12): 1077-1087. doi:10.1016/j.tcb.2023.05.003
doi: 10.1016/j.tcb.2023.05.003 |
43 |
MARTIN-SAIZ L, GUERRERO-MAUVECIN J, MARTIN-SANCHEZ D, et al. Ferrostatin-1 modulates dysregulated kidney lipids in acute kidney injury [J]. J Pathol, 2022, 257(3): 285-299. doi:10.1002/path.5882
doi: 10.1002/path.5882 |
44 |
ZHANG H L, HU B X, LI Z L, et al. PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis [J]. Nat Cell Biol, 2022, 24(1): 88-98. doi:10.1038/s41556-021-00818-3
doi: 10.1038/s41556-021-00818-3 |
45 |
HUANG L, ZHANG L, ZHANG Z, et al. Loss of nephric augmenter of liver regeneration facilitates acute kidney injury via ACSL4-mediated ferroptosis [J]. J Cell Mol Med, 2024, 28(3): e18076. doi:10.1111/jcmm.18076
doi: 10.1111/jcmm.18076 |
46 |
POINDESSOUS V, LAZARETH H, CRAMBERT G, et al. STAT3 drives the expression of ACSL4 in acute kidney injury [J]. iScience, 2024, 27(6): 109737. doi:10.1016/j.isci.2024.109737
doi: 10.1016/j.isci.2024.109737 |
47 |
NIZIOL J, OSSOLINSKI K, TRIPET B P, et al. Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based serum metabolomics of kidney cancer [J]. Anal Bioanal Chem, 2020, 412(23): 5827-5841. doi:10.1007/s00216-020-02807-1
doi: 10.1007/s00216-020-02807-1 |
48 |
WOLRAB D, JIRASKO R, PETERKA O, et al. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls [J]. Sci Rep, 2021, 11(1): 20322. doi:10.1038/s41598-021-99586-1
doi: 10.1038/s41598-021-99586-1 |
49 |
NIZIOL J, OSSOLINSKI K, TRIPET B P, et al. Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients [J]. J Pharm Biomed Anal, 2021, 193: 113752. doi:10.1016/j.jpba.2020.113752
doi: 10.1016/j.jpba.2020.113752 |
50 |
ZHANG J, LI S Q, LIN J Q, et al. Mass Spectrometry Imaging Enables Discrimination of Renal Oncocytoma from Renal Cell Cancer Subtypes and Normal Kidney Tissues [J]. Cancer Res, 2020, 80(4): 689-698. doi:10.1158/0008-5472.can-19-2522
doi: 10.1158/0008-5472.can-19-2522 |
51 |
MONIRUJJAMAN M, AUKEMA H M. Cyclooxygenase 2 inhibition slows disease progression and improves the altered renal lipid mediator profile in the Pkd2(WS25/-) mouse model of autosomal dominant polycystic kidney disease [J]. J Nephrol, 2019, 32(3): 401-409. doi:10.1007/s40620-018-00578-8
doi: 10.1007/s40620-018-00578-8 |
52 |
RAO H, LIU C, WANG A, et al. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer [J]. Nat Commun, 2023, 14(1): 7572. doi:10.1038/s41467-023-43378-w
doi: 10.1038/s41467-023-43378-w |
53 |
EUM J Y, LEE J C, YI S S, et al. Aging-related lipidomic changes in mouse serum, kidney, and heart by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A, 2020, 1618: 460849. doi:10.1016/j.chroma.2020.460849
doi: 10.1016/j.chroma.2020.460849 |
[1] | 张锐,周颖,倪文吉,黄亚,李丹丹,金涛,钟勇. 人工智能视网膜微血管分析在糖尿病并发症中的应用价值[J]. 实用医学杂志, 2024, 40(8): 1142-1147. |
[2] | 黄挺,谢榕城,王雨婷,林小明,马杰飞. 肾阻力指数联合血液和尿液生物标志物早期预测介入术后造影剂诱导的急性肾损伤的价值[J]. 实用医学杂志, 2024, 40(7): 1011-1016. |
[3] | 袁宸,赵霞,吴嘉宝,严花. S1P在哮喘中的研究现状及应用前景[J]. 实用医学杂志, 2024, 40(7): 936-940. |
[4] | 戴成才,程振兴,涂倩倩. 血清胱抑素C联合床旁肾脏超声对脓毒症急性肾损伤患者预后情况的评估价值[J]. 实用医学杂志, 2024, 40(22): 3226-3231. |
[5] | 黄坤源,江克华,王庆. S100A9在肾脏疾病中的研究进展[J]. 实用医学杂志, 2024, 40(22): 3251-3255. |
[6] | 黄瑜亮,汤颖,余文娟,陈俊哲. Cyclin D1通过促进糖酵解改善肾脏缺血再灌注诱导的急性肾损伤的机制[J]. 实用医学杂志, 2024, 40(21): 3013-3022. |
[7] | 俞天悦,郭茜,胡昊,苏宇静,陈剑华. 精神分裂症中氧化应激相关通路与诊断和预测价值的研究进展[J]. 实用医学杂志, 2024, 40(20): 2935-2940. |
[8] | 唐立丽,王昕宇,张杰,赵悦,李小悦. m6A甲基化修饰在急性肾损伤中的研究进展[J]. 实用医学杂志, 2024, 40(2): 278-282. |
[9] | 蒋伟,王辉,黄中伟,黄新忠. 可溶性生长刺激表达基因2蛋白对脓毒症相关急性肾损伤的预测价值[J]. 实用医学杂志, 2024, 40(16): 2291-2297. |
[10] | 李媛,刘会玲,吴丹,李宝宝. 毒力因子在复发性外阴阴道假丝酵母菌病中的研究进展[J]. 实用医学杂志, 2024, 40(16): 2347-2351. |
[11] | 杨洁,李春红,黄婧菲,陈治伟,柳林. hsa_circ_0003922在子宫内膜样癌中的表达及意义[J]. 实用医学杂志, 2024, 40(14): 1975-1980. |
[12] | 赵国敏,张辉,叶朴聪,陈炜. 乳酸脱氢酶与白蛋白比值对脓毒症相关急性肾损伤患者短期预后的影响[J]. 实用医学杂志, 2024, 40(13): 1803-1807. |
[13] | 金玉峰,申存毅,张靖垚,薛玉龙,何栋. 局部枸橼酸抗凝在连续肾脏替代疗法串联人工肝治疗中的运用效果观察[J]. 实用医学杂志, 2024, 40(13): 1879-1884. |
[14] | 潘春玲,易雪丽,苏丽,袁胜山,韦贵将. 环状RNA与动脉粥样硬化性缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(12): 1755-1761. |
[15] | 郑因碧,邵义明,黎焯基,黎诗婷,陈鸣娣,曾文驰,董宏裕. 右美托咪定对脓毒症急性肾损伤患者的肾功能影响的队列研究[J]. 实用医学杂志, 2024, 40(10): 1423-1428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||