实用医学杂志 ›› 2024, Vol. 40 ›› Issue (7): 893-897.doi: 10.3969/j.issn.1006-5725.2024.07.003

• 专题笔谈 • 上一篇    下一篇

深度学习在辅助生殖技术领域的应用进展

胡希,李艳,刘洋()   

  1. 昆明医科大学第二附属医院生殖医学科 (昆明 650101 )
  • 收稿日期:2023-11-13 出版日期:2024-04-10 发布日期:2024-04-08
  • 通讯作者: 刘洋 E-mail:13518735544@163.com
  • 作者简介:刘洋,医学博士、主任医师、硕士研究生导师,昆明医科大学第二附属医院生殖医学科副主任。中国优生科学协会生殖道疾病临床诊治分会委员,云南省医师协会临床精准医疗专业委员会副主任委员,云南省女医师协会妇科分会副主任委员,云南省优生优育妇幼保健协会助孕与优生专业委员会副主任委员,云南省医师协会医学遗传学分会副主任委员。首批云南省万人计划“青年拔尖人才”,云南省“兴滇英才支持计划”名医项目,云南省卫健委医学学科带头人,云南省优秀青年骨干教师,国家级生殖健康咨询师,获云南省卫生科技教育管理协会科技进步二等奖、三等奖等,主持国家级、省厅级课题近十项,发表SCI论文数十余篇(累计影响因子89.64),中文核心期刊论文近百篇,获批实用新型专利12项,发表专著3部。E-mail:13518735544@163.com
  • 基金资助:
    云南省兴滇英才支持计划名医项目(XDYC- MY-2022-0057);云南省专业学位研究生教学案例库(20208007);昆明医科大学中青年学科带头人及后备人选-“乘风”人才培养计划(2023(108))

Recent advances on the application of deep learning in assisted reproductive technology

Xi HU,Yan LI,Yang. LIU()   

  1. Department of Reproductive Medicine,the Second Affiliated Hospital of Kunming Medical University,Kunming 650101,China
  • Received:2023-11-13 Online:2024-04-10 Published:2024-04-08
  • Contact: Yang. LIU E-mail:13518735544@163.com

摘要:

深度学习是人工智能领域一种机器学习方法,它模拟人类大脑神经网络的工作原理来解决复杂的问题,目前在医学领域已有许多重要的研究和应用,如影像诊断、生物医学数据处理、药物研发、个性化医疗等,提高了医疗诊断和治疗的准确性及效率。在辅助生殖领域,深度学习在干预过程中高效识别生长良好的胚胎、适宜的卵母细胞或精子,协助专业人员做出更为准确的选择,提高妊娠率,减少多胎妊娠风险。本文将综合归纳近5年深度学习在辅助生殖技术领域的最新应用进展,并对今后研究方向进行展望。

关键词: 深度学习, 辅助生殖技术, 体外受精, 胚胎质量, 精子形态, 卵母细胞

Abstract:

Deep learning is a machine learning method in the field of artificial intelligence, which simulates the workings of the neural network of the human brain to solve complex problems, and has been used in many important researches and applications in the field of medicine, such as diagnostic imaging, biomedical data processing, drug research and development, personalized medicine, etc., which improves the accuracy and efficiency of diagnosis and treatment. In the field of assisted reproduction, deep learning could efficiently identify well-grown embryos, suitable oocytes, or sperms during the intervention process, assisting medical staff to make more accurate choices to improve pregnancy rates and reduce the risk of multiple pregnancies. This paper summarizes the latest advances in the application of deep learning in the field of assisted reproduction technology in the past 5 years, and provides an outlook for future research.

Key words: deep learning, assisted reproductive technology, in vitro fertilization, embryo quality, sperm morphology, oocyte

中图分类号: