1 |
BI W L, HOSNY A, SCHABATH M B,et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019,69(2):127-157. doi:10.3322/caac.21552
doi: 10.3322/caac.21552
|
2 |
周德富,邹廉,陈瑛. 人工神经网络在体外受精胚胎评估中的应用[J]. 中华检验医学杂志, 2022,45(3): 310-314. doi:10.3760/cma.j.cn114452-20210811-00496
doi: 10.3760/cma.j.cn114452-20210811-00496
|
3 |
于医萍,高一博,方兰兰,等. 机器学习在体外受精-胚胎移植技术中的应用[J]. 中华生殖与避孕杂志, 2021,41(10): 883-892. doi:10.3760/cma.j.cn101441-20200428-00251
doi: 10.3760/cma.j.cn101441-20200428-00251
|
4 |
GARDNER D K, LANE M, STEVENS J,et al. Reprint of: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer[J]. Fertil Steril,2019,112(4 ):e81-e84. doi:10.1016/j.fertnstert.2019.08.077
doi: 10.1016/j.fertnstert.2019.08.077
|
5 |
MUSHTAQ A, MUMTAZ M, RAZA A,et al. Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization[J]. Sensors, 2022,22(19): 7418. doi:10.3390/s22197418
doi: 10.3390/s22197418
|
6 |
CHAVEZ-BADIOLA A, FLORES-SAIFFE-FARÍAS A, MENDIZABAL-RUIZ G, et al. Embryo Ranking Intelligent Classification Algorithm(ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation[J]. Reprod Biomed Online, 2020, 41(4): 585-593. doi:10.1016/j.rbmo.2020.07.003
doi: 10.1016/j.rbmo.2020.07.003
|
7 |
ORMANN C L, KANAKASABAPATHY M K, THIRUMALARAJU P, et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation[J]. Elife,2020,9: e55301. doi:10.7554/elife.55301
doi: 10.7554/elife.55301
|
8 |
LOEWKE K, CHO J H, BRUMAR C D, et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos[J]. Fertil Steril, 2022,117(3): 528-535. doi:10.1016/j.fertnstert.2021.11.022
doi: 10.1016/j.fertnstert.2021.11.022
|
9 |
FITZ V W, KANAKASABAPATHY M K, THIRUMALARAJU P,et al. Should there be an “AI” in TEAM?Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm[J]. J Assist Reprod Genet, 2021,38(10): 2663-2670. doi:10.1007/s10815-021-02318-7
doi: 10.1007/s10815-021-02318-7
|
10 |
UENO S, BERNTSEN J, ITO M, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study[J]. Fertil Steril,2021,116(4): 1172-1180. doi:10.1016/j.fertnstert.2021.06.001
doi: 10.1016/j.fertnstert.2021.06.001
|
11 |
VERMILYEA M, HALL J M M, DIAKIW S M, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF[J]. Hum Reprod, 2020,35(4): 770-784. doi:10.1093/humrep/deaa013
doi: 10.1093/humrep/deaa013
|
12 |
纪冰,马学工,李斌业,等. Time-lapse培养与常规培养卵裂期胚胎移植的妊娠及新生儿结局分析[J]. 实用医学杂志, 2020,36(21): 3001-3004. doi:10.3969/j.issn.1006-5725.2020.21.023
doi: 10.3969/j.issn.1006-5725.2020.21.023
|
13 |
KRAGH M F, RIMESTAD J, BERNTSEN J, et al. Automatic grading of human blastocysts from time-lapse imaging[J]. Comput Biol Med, 2019,115: 103494. doi:10.1016/j.compbiomed.2019.103494
doi: 10.1016/j.compbiomed.2019.103494
|
14 |
LEE C I, SU Y R, CHEN C H, et al. End-to-end deep learning for recognition of ploidy status using time-lapse videos[J]. J Assist Reprod Genet, 2021,38(7): 1655-1663. doi:10.1007/s10815-021-02228-8
doi: 10.1007/s10815-021-02228-8
|
15 |
HUANG T T F, KOSASA T, WALKER B, et al. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files[J]. Reprod Biomed Online, 2021,42(6): 1075-1085. doi:10.1016/j.rbmo.2021.02.015
doi: 10.1016/j.rbmo.2021.02.015
|
16 |
HUANG B, ZHENG S, MA B, et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data[J]. BMC Pregnancy Childbirth, 2022,22(1): 36. doi:10.1186/s12884-021-04373-5
doi: 10.1186/s12884-021-04373-5
|
17 |
TRAN D, COOKE S, ILLINGWORTH P J, et al. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer[J]. Hum Reprod, 2019,34(6): 1011-1018. doi:10.1093/humrep/dez064
doi: 10.1093/humrep/dez064
|
18 |
DUVAL A, NOGUEIRA D, DISSLER N, et al. A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems[J]. Hum Reprod, 2023,38(4): 596-608. doi:10.1093/humrep/dead023
doi: 10.1093/humrep/dead023
|
19 |
JIANG V S, KANDULA H, THIRUMALARAJU P, et al. The use of voting ensembles to improve the accuracy of deep neural networks as a non-invasive method to predict embryo ploidy status[J]. J Assist Reprod Genet, 2023,40(2): 301-308. doi:10.1007/s10815-022-02707-6
doi: 10.1007/s10815-022-02707-6
|
20 |
FIRUZINIA S, AFZALI S M, GHASEMIAN F, et al. A robust deep learning-based multiclass segmentation method for analyzing human metaphase II oocyte images[J]. Comput Methods Programs Biomed, 2021,201: 105946. doi:10.1016/j.cmpb.2021.105946
doi: 10.1016/j.cmpb.2021.105946
|
21 |
LIANG X, LIANG J, ZENG F, et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound[J]. Reprod Biomed Online, 2022,45(6): 1197-1206. doi:10.1016/j.rbmo.2022.07.012
doi: 10.1016/j.rbmo.2022.07.012
|
22 |
JIANG V S, KARTIK D, THIRUMALARAJU P, et al. Advancements in the future of automating micromanipulation techniques in the IVF laboratory using deep convolutional neural networks[J]. J Assist Reprod Genet, 2023,40(2): 251-257. doi:10.1007/s10815-022-02685-9
doi: 10.1007/s10815-022-02685-9
|
23 |
杨静薇,邓成艳,黄学锋,等. 中华医学会生殖医学分会2019年度辅助生殖技术数据报告[J]. 生殖医学杂志, 2022,31(8):1015-1021.
|
24 |
CENTERS FOR DISEASE CONTROL AND PREVENTION. 2019 Assisted Reproductive Technology Fertility Clinicand National Summary Report[EB/OL]. .
|
25 |
LEE R, WITHERSPOON L, ROBINSON M, et al. Automated rare sperm identification from low-magnification microscopy images of dissociated microsurgical testicular sperm extraction samples using deep learning[J]. Fertil Steril, 2022,118(1): 90-99. doi:10.1016/j.fertnstert.2022.03.011
doi: 10.1016/j.fertnstert.2022.03.011
|
26 |
ABBASI A, MIAHI E, MIRROSHANDEL S A. Effect of deep transfer and multi-task learning on sperm abnormality detection[J]. Comput Biol Med, 2021,128: 104121. doi:10.1016/j.compbiomed.2020.104121
doi: 10.1016/j.compbiomed.2020.104121
|
27 |
MARÍN R, CHANG V. Impact of transfer learning for human sperm segmentation using deep learning[J]. Comput Biol Med,2021,136: 104687. doi:10.1016/j.compbiomed.2021.104687
doi: 10.1016/j.compbiomed.2021.104687
|
28 |
RIORDON J, MCCALLUM C, SINTON D. Deep learning for the classification of human sperm[J]. Comput Biol Med, 2019,111: 103342. doi:10.1016/j.compbiomed.2019.103342
doi: 10.1016/j.compbiomed.2019.103342
|
29 |
JAVADI S, MIRROSHANDEL S A. A novel deep learning method for automatic assessment of human sperm images[J]. Comput Biol Med, 2019,109: 182-194. doi:10.1016/j.compbiomed.2019.04.030
doi: 10.1016/j.compbiomed.2019.04.030
|
30 |
VALIUŠKAITĖ V, RAUDONIS V, MASKELIŪNAS R, et al. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination[J]. Sensors (Basel), 2020,21(1):72. doi:10.3390/s21010072
doi: 10.3390/s21010072
|
31 |
袁启龙,蒋满波,陆杉,等. 轻中度精索静脉曲张所致精子DNA碎片异常行保守干预对体外受精胚胎质量的影响[J]. 实用医学杂志,2020,36(12): 1644-1648. doi:10.3969/j.issn.1006-5725.2020.12.019
doi: 10.3969/j.issn.1006-5725.2020.12.019
|
32 |
MCCALLUM C, RIORDON J, WANG Y, et al. Deep learning-based selection of human sperm with high DNA integrity[J]. Commun Biol, 2019,2: 250. doi:10.1038/s42003-019-0491-6
doi: 10.1038/s42003-019-0491-6
|
33 |
NOY L, BARNEA I, MIRSKY S K, et al. Sperm-cell DNA fragmentation prediction using label-free quantitative phase imaging and deep learning[J]. Cytometry A, 2023,103(6): 470-478. doi:10.1002/cyto.a.24703
doi: 10.1002/cyto.a.24703
|