1 |
SIEGEL D A, O'NEIL M E, RICHARDS T B, et al. Prostate Cancer Incidence and Survival, by Stage and Race/Ethnicity- United States, 2001-2017[J]. MMWR Morb Mortal Wkly Rep,2020,69(41):1473-1480. doi:10.15585/mmwr.mm6941a1
doi: 10.15585/mmwr.mm6941a1
|
2 |
ZHANG Z, GARZOTTO M, DAVIS E W 2nd, et al. Sulforaphane Bioavailability and Chemopreventive Activity in Men Presenting for Biopsy of the Prostate Gland: A Randomized Controlled Trial[J]. Nutr Cancer,2020,72(1):74-87. doi:10.1080/01635581.2019.1619783
doi: 10.1080/01635581.2019.1619783
|
3 |
HERMSEN R, WEDICK E B C, VINKEN M J M, et al. Lymph node staging with fluorine-18 prostate specific membrane antigen 1007-positron emission tomography/computed tomography in newly diagnosed intermediate- to high-risk prostate cancer using histopathological evaluation of extended pelvic node dissection as reference[J]. Eur J Nucl Med Mol Imaging,2022,49(11):3929-3937. doi:10.1007/s00259-022-05827-4
doi: 10.1007/s00259-022-05827-4
|
4 |
LIU J, LIU D, ZHANG X, et al. NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia[J]. Clin Sci (Lond),2021,135(13):1591-1608. doi:10.1042/cs20210476
doi: 10.1042/cs20210476
|
5 |
WEI Y, PENG J, HE S, et al. miR-223-5p targeting ERG inhibits prostate cancer cell proliferation and migration[J]. J Cancer,2020,11(15):4453-4463. doi:10.7150/jca.44441
doi: 10.7150/jca.44441
|
6 |
SUN C, LIU X H, SUN Y R. MiR-223-3p inhibits proliferation and metastasis of oral squamous cell carcinoma by targeting SHOX2[J]. Eur Rev Med Pharmacol Sci,2019,23(16):6927-6934.
|
7 |
PAN X, FAN J, PENG F, et al. SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways[J]. Bioengineered,2022,13(3):7253-7261. doi:10.1080/21655979.2022.2045830
doi: 10.1080/21655979.2022.2045830
|
8 |
夏旭,崔洪泉,胡培森,等. 熟地黄多糖对前列腺癌PC-3细胞增殖凋亡的作用及对VEGF/Akt信号通路的影响[J]. 实用医学杂志,2021,37(17):2194-2198. doi:10.3969/j.issn.1006-5725.2021.17.005
doi: 10.3969/j.issn.1006-5725.2021.17.005
|
9 |
杨凌博,杨金辉,鲁帅奇,等. lncRNA ZNF571-AS1对前列腺癌细胞增殖及侵袭能力的影响[J]. 实用医学杂志,2020,36(23):3206-3210. doi:10.3969/j.issn.1006-5725.2020.23.008
doi: 10.3969/j.issn.1006-5725.2020.23.008
|
10 |
HUANG W T, ZHANG H, JIN Z, et al. MiR-219-5p inhibits prostate cancer cell growth and metastasis by targeting HMGA2[J]. Eur Rev Med Pharmacol Sci,2020,24(9):4710-4718.
|
11 |
ZHENG J, CHEN G, LI T, et al. Isoflurane Promotes Cell Proliferation, Invasion, and Migration by Regulating BACH1 and miR-375 in Prostate Cancer Cells In Vitro[J]. Int J Toxicol,2022,41(3):212-224. doi:10.1177/10915818221084906
doi: 10.1177/10915818221084906
|
12 |
LI W, LI F, ZHANG Y, et al. X-Linked Inhibitor of Apoptosis Protein (XIAP)-Loaded Magnetic Mesoporous Silica Nanoparticles Incorporated with miR-233 to Improve Radio Sensitization of Cervical Cancer Cells and Promote Apoptosis[J]. J Biomed Nanotechnol,2022,18(3):747-753. doi:10.1166/jbn.2022.3281
doi: 10.1166/jbn.2022.3281
|
13 |
CHEN X X, ZHANG N, FU X F, et al. LncRNA DBH-AS1 facilitates the tumorigenesis of melanoma by targeting miR-233-3p via IGF-1R/Akt signaling[J]. Eur Rev Med Pharmacol Sci,2020,24(14):7698-7708. doi:10.26355/eurrev_202007_22272
doi: 10.26355/eurrev_202007_22272
|
14 |
陈艳雅,招锦兰,李婵,等. 卵巢癌组织中miR-223的表达及其对卵巢癌OVCAR3细胞增殖和侵袭的促进作用[J]. 吉林大学学报(医学版),2023,49(1):150-157.
|
15 |
毛雪宝,王秀虹. 长链非编码RNA FBXL19-AS1通过下调miR-223表达增加宫颈癌细胞增殖、迁移和侵袭能力[J]. 华中科技大学学报(医学版),2022,51(6):805-812,824.
|
16 |
LI S, FENG Y, HUANG Y, et al. MiR-223-3p regulates cell viability, migration, invasion, and apoptosis of non-small cell lung cancer cells by targeting RHOB[J]. Open Life Sci,2020,15(1):389-399. doi:10.1515/biol-2020-0040
doi: 10.1515/biol-2020-0040
|
17 |
ZHANG Q, LIN L, LI W, et al. MiR-223 inhibitor suppresses proliferation and induces apoptosis of thyroid cancer cells by down-regulating aquaporin-1[J]. J Recept Signal Transduct Res,2019,39(2):146-153. doi:10.1080/10799893.2019.1638403
doi: 10.1080/10799893.2019.1638403
|
18 |
TU W, WANG H, LI S, et al. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases[J]. Aging Dis,2019,10(3):637-651. doi:10.14336/ad.2018.0513
doi: 10.14336/ad.2018.0513
|
19 |
ZHANG X, WU Q, WANG Z, et al. Keap1-Nrf2/ARE signal pathway activated by butylphthalide in the treatment of ischemic stroke[J]. Am J Transl Res,2022,14(4):2637-2646.
|
20 |
SU Y, XU J, CHEN S, et al. Astragaloside IV protects against ischemia/reperfusion (I/R)-induced kidney injury based on the Keap1-Nrf2/ARE signaling pathway[J]. Transl Androl Urol,2022,11(8):1177-1188. doi:10.21037/tau-22-505
doi: 10.21037/tau-22-505
|
21 |
ZHU W, TANG H, CAO L, et al. Epigallocatechin-3-O-gallate ameliorates oxidative stress-induced chondrocyte dysfunction and exerts chondroprotective effects via the Keap1/Nrf2/ARE signaling pathway[J]. Chem Biol Drug Des,2022,100(1):108-120. doi:10.1111/cbdd.14056
doi: 10.1111/cbdd.14056
|
22 |
LI J, XIONG C, XU P, et al. Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signaling pathway[J]. Bioengineered,2021,12(1):402-413. doi:10.1080/21655979.2020.1868733
doi: 10.1080/21655979.2020.1868733
|
23 |
LIAO D, SHANGGUAN D, WU Y, et al. Curcumin protects against doxorubicin induced oxidative stress by regulating the Keap1-Nrf2-ARE and autophagy signaling pathways[J]. Psychopharmacology (Berl),2023,240(5):1179-1190. doi:10.1007/s00213-023-06357-z
doi: 10.1007/s00213-023-06357-z
|
24 |
LI B, JIANG T, LIU H, et al. Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1-Nrf2-Are signaling pathway[J]. J Cell Physiol,2018,234(1):561-571. doi:10.1002/jcp.26769
doi: 10.1002/jcp.26769
|
25 |
CHEN X, QI J, WU Q, et al. High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression[J]. Acta Biochim Biophys Sin (Shanghai),2020,52(5):506-516. doi:10.1093/abbs/gmaa023
doi: 10.1093/abbs/gmaa023
|
26 |
LIU W, ZHAO H, SU Y, et al. Senescence marker protein 30 confers neuroprotection in oxygen-glucose deprivation/reoxygenation-injured neurons through modulation of Keap1/Nrf2 signaling: Role of SMP30 in OGD/R-induced neuronal injury[J]. Hum Exp Toxicol,2021,40(3):472-482. doi:10.1177/0960327120954243
doi: 10.1177/0960327120954243
|