实用医学杂志 ›› 2024, Vol. 40 ›› Issue (10): 1467-1472.doi: 10.3969/j.issn.1006-5725.2024.10.024
• 综述 • 上一篇
收稿日期:
2023-07-12
出版日期:
2024-05-25
发布日期:
2024-05-21
通讯作者:
曾俊伟
E-mail:junweizeng@sohu.com
基金资助:
Xuan LIANG,Jingran MU,Yan LUO,Tao XU,Junwei. ZENG()
Received:
2023-07-12
Online:
2024-05-25
Published:
2024-05-21
Contact:
Junwei. ZENG
E-mail:junweizeng@sohu.com
摘要:
阿尔茨海默病(Alzheimer's disease, AD)是一种常见神经系统退行性疾病。脑衰反应调节蛋白2(collapsin response mediator protein2, CRMP2)在AD病变进展中发挥作用,CRMP2高磷酸化导致神经元轴突末端微管稳定性下降,神经元轴浆运输异常,从而导致神经元线粒体动力学异常,抑制溶酶体自噬能力,导致NMDA受体过度激活。CRMP2磷酸化为AD药物研发提供了思路。本文就有关CRMP2参与AD病变的相关分子机制的研究进展进行综述,以期为靶向药物的研发提供参考资料。
中图分类号:
梁璇,慕静然,骆延,徐陶,曾俊伟. CRMP2磷酸化参与阿尔茨海默病的机制研究进展[J]. 实用医学杂志, 2024, 40(10): 1467-1472.
Xuan LIANG,Jingran MU,Yan LUO,Tao XU,Junwei. ZENG. Research progress on the mechanism of CRMP2 phosphorylation in Alzheimer′s disease[J]. The Journal of Practical Medicine, 2024, 40(10): 1467-1472.
1 |
STRATTON H, BOINON L, MOUTAL A, et al. Coordinating synaptic signaling with CRMP2[J]. Int J Biochem Cell Biol, 2020, 124: 105759. doi:10.1016/j.biocel.2020.105759
doi: 10.1016/j.biocel.2020.105759 |
2 |
王思翔, 曾红梅, 李扬娜, 等. 诊断阿尔茨海默病潜在生物标志物的研究进展[J]. 实用医学杂志, 2019, 35(7):1173-1176. doi:10.3969/j.issn.1006-5725.2019.07.037
doi: 10.3969/j.issn.1006-5725.2019.07.037 |
3 |
WATAMURA N, TOBA J, YOSHII A, et al. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment[J]. J Neurosci Res, 2016, 94(1):15-26. doi:10.1002/jnr.23674
doi: 10.1002/jnr.23674 |
4 |
MOUTAL A, WHITE K A, CHEFDEVILLE A, et al. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions[J]. Mol Neurobiol, 2019, 56(10):6736-6755. doi:10.1007/s12035-019-1568-4
doi: 10.1007/s12035-019-1568-4 |
5 |
IP J P, FU A K, IP N Y. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases[J]. Neuroscientist, 2014, 20(6):589-598. doi:10.1177/1073858413514278
doi: 10.1177/1073858413514278 |
6 |
KHANNA R, MOUTAL A, PEREZ-MILLER S, et al. Druggability of CRMP2 for neurodegenerative diseases[J]. ACS Chem Neurosci, 2020, 11(17):2492-2505. doi:10.1021/acschemneuro.0c00307
doi: 10.1021/acschemneuro.0c00307 |
7 |
HENSLEY K, KURSULA P. Collapsin Response Mediator Protein-2 (CRMP2) is a plausible etiological factor and potential therapeutic target in Alzheimer's Disease: comparison and contrast with microtubule-associated protein Tau[J]. J Alzheimers Dis, 2016, 53(1):1-14. doi:10.3233/jad-160076
doi: 10.3233/jad-160076 |
8 |
WANG L, JI S. Inhibition of ubc9-induced CRMP2 sumoylation disrupts glioblastoma cell proliferation[J]. J Mol Neurosci, 2019, 69(3):391-398. doi:10.1007/s12031-019-01368-y
doi: 10.1007/s12031-019-01368-y |
9 |
BRUSTOVETSKY T, KHANNA R, BRUSTOVETSKY N. CRMP2 is involved in regulation of mitochondrial morphology and motility in neurons[J], Cells, 2021, 10(10):2781. doi:10.3390/cells10102781
doi: 10.3390/cells10102781 |
10 |
FRANÇOIS-MOUTAL L, DUSTRUDE E T, WANG Y, et al. Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain[J]. Pain, 2018, 159(10):2115-2127. doi:10.1097/j.pain.0000000000001294
doi: 10.1097/j.pain.0000000000001294 |
11 |
MÖLLER D, GELLERT M, LANGEL W, et al. Molecular dynamics simulations and in vitro analysis of the CRMP2 thiol switch[J]. Mol Biosyst, 2017, 13(9):1744-1753. doi:10.1039/c7mb00160f
doi: 10.1039/c7mb00160f |
12 |
MUHA V, WILLIAMSON R, HILLS R, et al. Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice[J]. Open Biol, 2019, 9(11):190192. doi:10.1098/rsob.190192
doi: 10.1098/rsob.190192 |
13 |
FUKUI K, KAWAKAMI H, HONJO T, et al. Vitamin E deficiency induces axonal degeneration in mouse hippocampal neurons[J]. J Nutr Sci Vitaminol (Tokyo), 2012, 58(6):377-383. doi:10.3177/jnsv.58.377
doi: 10.3177/jnsv.58.377 |
14 |
LEE H, JOO J, NAH S S, et al. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans[J]. Int J Mol Med, 2015, 35(6):1574-1586. doi:10.3892/ijmm.2015.2161
doi: 10.3892/ijmm.2015.2161 |
15 |
LIU C R, MIAO J, ZHANG Y L, et al. Effects of hypothyroidism on expression of CRMP2B and ARPC5 during development of the rat frontal cortex[J]. Int J Biol Sci, 2013, 9(2):209-218. doi:10.7150/ijbs.5646
doi: 10.7150/ijbs.5646 |
16 |
SOUTAR M P, THORNHILL P, COLE A R, et al. Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development?[J]. Curr Alzheimer Res, 2009, 6(3):269-278. doi:10.2174/156720509788486572
doi: 10.2174/156720509788486572 |
17 |
MOUTAL A, JI Y, BELLAMPALLI S S, et al. Differential expression of Cdk5-phosphorylated CRMP2 following a spared nerve injury[J]. Mol Brain, 2020, 13(1):97. doi:10.1186/s13041-020-00633-1
doi: 10.1186/s13041-020-00633-1 |
18 |
WANG Y, WANG X L, XIE G L, et al. Collapsin response mediator protein-2-induced retinal ischemic injury in a novel mice model of ocular ischemia syndrome[J]. Chin Med J (Engl), 2017, 130(11):1342-1351. doi:10.4103/0366-6999.206340
doi: 10.4103/0366-6999.206340 |
19 |
WU Z, WANG G, WANG H, et al. Fluoxetine exposure for more than 2 days decreases the neuronal plasticity mediated by CRMP2 in differentiated PC12 cells[J]. Brain Res Bull, 2020, 158:99-107. doi:10.1016/j.brainresbull.2020.02.007
doi: 10.1016/j.brainresbull.2020.02.007 |
20 |
NA E J, NAM H Y, PARK J, et al. PI3K-mTOR-S6K signaling mediates neuronal viability via collapsin response mediator protein-2 expression[J]. Front Mol Neurosci, 2017, 10:288. doi:10.3389/fnmol.2017.00288
doi: 10.3389/fnmol.2017.00288 |
21 |
IKEZU S, INGRAHAM DIXIE K L, KORO L, et al. Tau-tubulin kinase 1 and amyloid-β peptide induce phosphorylation of collapsin response mediator protein-2 and enhance neurite degeneration in Alzheimer disease mouse models[J]. Acta Neuropathol Commun, 2020, 8(1):12. doi:10.1186/s40478-020-0890-4
doi: 10.1186/s40478-020-0890-4 |
22 |
MOKHTAR S H, KIM M J, MAGEE K A, et al. Amyloid-beta-dependent phosphorylation of collapsin response mediator protein-2 dissociates kinesin in Alzheimer's disease[J]. Neural Regen Res, 2018, 13(6):1066-1080. doi:10.4103/1673-5374.233451
doi: 10.4103/1673-5374.233451 |
23 |
BRUSTOVETSKY T, KHANNA R, BRUSTOVETSKY N. CRMP2 participates in regulating mitochondrial morphology and motility in Alzheimer's Disease[J]. Cells, 2023, 12(9):1287. doi:10.3390/cells12091287
doi: 10.3390/cells12091287 |
24 |
CZECH T, YANG J W, CSASZAR E, et al. Reduction of hippocampal collapsin response mediated protein-2 in patients with mesial temporal lobe epilepsy[J]. Neurochem Res, 2004, 29(12):2189-2196. doi:10.1007/s11064-004-7025-3
doi: 10.1007/s11064-004-7025-3 |
25 |
WILLIAMSON R, VAN AALTEN L, MANN D M, et al. CRMP2 hyperphosphorylation is characteristic of Alzheimer's disease and not a feature common to other neurodegenerative diseases[J]. J Alzheimers Dis, 2011, 27(3): 615-625. doi:10.3233/jad-2011-110617
doi: 10.3233/jad-2011-110617 |
26 |
BRUSTOVETSKY T, KHANNA R, BRUSTOVETSKY N. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer's Disease[J]. Cells, 2023, 12(9): 1287. doi:10.3390/cells12091287
doi: 10.3390/cells12091287 |
27 |
COLE A R, NOBLE W, VAN AALTEN L, et al. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression[J]. J Neurochem, 2007, 103(3):1132-1144. doi:10.1111/j.1471-4159.2007.04829.x
doi: 10.1111/j.1471-4159.2007.04829.x |
28 |
YANG Z, KUBOYAMA T, TOHDA C. A Systematic Strategy for Discovering a Therapeutic Drug for Alzheimer's Disease and Its Target Molecule[J]. Front Pharmacol, 2017, 8:340. doi:10.3389/fphar.2017.00340
doi: 10.3389/fphar.2017.00340 |
29 |
PAIK S, SOMVANSHI R K, OLIVEIRA H A, et al. Somatostatin Ameliorates β-Amyloid-Induced Cytotoxicity via the Regulation of CRMP2 Phosphorylation and Calcium Homeostasis in SH-SY5Y Cells[J]. Biomedicines, 2021, 9(1):27. doi:10.3390/biomedicines9010027
doi: 10.3390/biomedicines9010027 |
30 |
COLE A R, KNEBEL A, MORRICE N A, et al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons[J]. J Biol Chem, 2004, 279(48):50176-50180. doi:10.1074/jbc.c400412200
doi: 10.1074/jbc.c400412200 |
31 |
UCHIDA Y, OHSHIMA T, SASAKI Y, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease[J]. Genes Cells, 2005, 10(2):165-179. doi:10.1111/j.1365-2443.2005.00827.x
doi: 10.1111/j.1365-2443.2005.00827.x |
32 | 刘延辉,夏淑轩,刘雅芳,等. Cdk5-CRMP通路在七氟醚抑制新生大鼠前额叶皮层树突发育中的作用[J]. 中国病理生理杂志, 2015,31(10):1729-1736. |
33 |
PETRATOS S, LI Q X, GEORGE A J, et al. The beta-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism[J]. Brain, 2008, 131(Pt 1):90-108. doi:10.1093/brain/awm260
doi: 10.1093/brain/awm260 |
34 |
尹红蕾, 李金凤, 乔立艳,等. 姜黄素对Aβ诱导的AD大鼠海马CRMP-2表达的影响[J].中国实用神经疾病杂志, 2012, 15(23):1-4. doi:10.3969/j.issn.1673-5110.2012.23.001
doi: 10.3969/j.issn.1673-5110.2012.23.001 |
35 |
ARIMURA N, KIMURA T, NAKAMUTA S, et al. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27[J]. Dev Cell, 2009, 16(5):675-686. doi:10.1016/j.devcel.2009.03.005
doi: 10.1016/j.devcel.2009.03.005 |
36 |
TAKATA K, KITAMURA Y, NAKATA Y, et al. Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer's disease[J]. Am J Pathol, 2009, 175(1):17-24. doi:10.2353/ajpath.2009.080908
doi: 10.2353/ajpath.2009.080908 |
37 |
高晨皓, 孙争宇, 张杰文. 线粒体动力学失衡与阿尔茨海默病发病机制的相关性研究进展[J]. 中华神经医学杂志, 2019, 18(4):337-343. doi:10.3760/cma.j.issn.1671-8925.2019.04.003
doi: 10.3760/cma.j.issn.1671-8925.2019.04.003 |
38 |
况煌, 田慧珍, 谭成勇, 等. 自噬与阿尔茨海默病的相关研究进展[J]. 中华神经医学杂志, 2019, 18(8):842-846. doi:10.3760/cma.j.issn.1671-8925.2019.08.017
doi: 10.3760/cma.j.issn.1671-8925.2019.08.017 |
39 |
HENSLEY K, GABBITA S P, VENKOVA K, et al. A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 × Tg-AD mouse model of Alzheimer disease[J]. J Neuropathol Exp Neurol, 2013, 72(10):955-969. doi:10.1097/nen.0b013e3182a74372
doi: 10.1097/nen.0b013e3182a74372 |
40 |
LIN F Y, LIN Y F, LIN Y S, et al. Relative D3 vitamin deficiency and consequent cognitive impairment in an animal model of Alzheimer's disease: Potential involvement of collapsin response mediator protein-2[J]. Neuropharmacology, 2020, 164:107910. doi:10.1016/j.neuropharm.2019.107910
doi: 10.1016/j.neuropharm.2019.107910 |
41 |
JI Y, HU Y, REN J, et al. CRMP2-derived peptide ST2-104 (R9-CBD3) protects SH-SY5Y neuroblastoma cells against Aβ25-35-induced neurotoxicity by inhibiting the pCRMP2/NMDAR2B signaling pathway[J]. Chem Biol Interact, 2019, 305:28-39. doi:10.1016/j.cbi.2019.03.005
doi: 10.1016/j.cbi.2019.03.005 |
42 | 孟盼盼, 张雨晴, 高媛媛, 等. CRMP2衍生的ST2-104多肽对阿尔茨海默病大鼠皮质神经元的保护作用[J].中风与神经疾病杂志, 2016, 33(3):203-206. |
43 |
姚远, 任晶红, 刘环宇, 等. CRMP2衍生的TAT-CBD3多肽对阿尔茨海默病神经元的保护作用[J].中国实验诊断学, 2021, 25(10):1518-1522. doi:10.3969/j.issn.1007-4287.2021.10.028
doi: 10.3969/j.issn.1007-4287.2021.10.028 |
44 |
SUTINEN E M, KOROLAINEN M A, HÄYRINEN J, et al. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells[J]. Front Cell Neurosc, 2014, 8: 214. doi:10.3389/fncel.2014.00214
doi: 10.3389/fncel.2014.00214 |
45 |
孙缦利, 邓海峰, 马玲, 等. 美满霉素对阿尔茨海默病大鼠前额叶皮层CRMP-2和Caspase-3表达的影响[J]. 中国老年学杂志, 2018, 38(17):4236-4239. doi:10.3969/j.issn.1005-9202.2018.17.052
doi: 10.3969/j.issn.1005-9202.2018.17.052 |
46 |
LAWAL M, OLOTU F A, SOLIMAN M E S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools[J]. Comput Biol Med, 2018, 98:168-177. doi:10.1016/j.compbiomed.2018.05.012
doi: 10.1016/j.compbiomed.2018.05.012 |
[1] | 陈露露,罗萌,苏凯奇,高静,冯晓东. 内质网-线粒体互作在卒中后认知障碍中的研究进展[J]. 实用医学杂志, 2024, 40(7): 1023-1028. |
[2] | 王加栋,黄方舟,黄艳,陈管雄,刘军,黄佩琦. Eupatilin通过Sesn2-Nrf2保护线粒体功能在脓毒症脑损伤中的作用[J]. 实用医学杂志, 2024, 40(5): 601-607. |
[3] | 韩英妹,李一杰,张衡,吕静,张仪,乔英博,林楠,徐慧勇,王丰. 基于MRI分析阿尔茨海默病大尺度脑网络研究进展[J]. 实用医学杂志, 2024, 40(4): 575-579. |
[4] | 刘洁琼,姚雅俪,隋倩,李科,黄芳,曹永清. 沙库巴曲缬沙坦钠片预防多柔比星所致心脏毒性的机制[J]. 实用医学杂志, 2024, 40(2): 188-194. |
[5] | 陶颖俊,任腾竹,魏峰,刘新通. 阿加曲班联合线粒体移植对脑缺血再灌注损伤小鼠内皮功能及血流变学的影响[J]. 实用医学杂志, 2024, 40(19): 2665-2671. |
[6] | 李竹,王嫣,周雯静,王海英. 线粒体呼吸链酶复合物在心肌缺血再灌注损伤中的作用进展[J]. 实用医学杂志, 2024, 40(15): 2172-2176. |
[7] | 温丽民,李冉,郝延磊,孔庆霞,夏敏. 与MELAS综合征相关的线粒体基因异质性研究进展[J]. 实用医学杂志, 2024, 40(13): 1885-1888. |
[8] | 刘娟,李彦杰,秦合伟,马璐瑶,赵楠楠,丁慧敏. 线粒体质量控制系统失调介导帕金森病的作用机制[J]. 实用医学杂志, 2024, 40(11): 1479-1482. |
[9] | 申杰,徐桂华. 阿尔茨海默病与血脑屏障的相关性研究进展[J]. 实用医学杂志, 2024, 40(11): 1602-1606. |
[10] | 李若男 杨俊 张静 杨简 向祖金 . 线粒体质量控制系统在心脏衰老中的研究进展 [J]. 实用医学杂志, 2023, 39(8): 1052-1057. |
[11] | 方雪 邵卫 许慧芳 李道新 王婧 . 基于2⁃Cl⁃MGV⁃1/BDNF⁃TrkB 通路探讨脑梗死后认知功能改善的研究 [J]. 实用医学杂志, 2023, 39(7): 819-826. |
[12] | 马长淞,黄帅,瓦庆德,陈伟之,汪洋,令狐熙涛,唐欲博. 银杏内酯B通过抑制内质网应激拮抗血管内皮损伤的作用机制[J]. 实用医学杂志, 2023, 39(24): 3175-3181. |
[13] | 李招兵,刘雨露,黄云辉. 下调硫酸乙酰肝素酶减轻大鼠心肌缺血再灌注损伤的机制[J]. 实用医学杂志, 2023, 39(21): 2761-2767. |
[14] | 孙晓彤,韩崇旭,王婵,任传利,张明明. TMEM39A在原发性胆汁性胆管炎中的作用机制[J]. 实用医学杂志, 2023, 39(17): 2176-2182. |
[15] | 吴静,聂祖琼,尹琬凌. miR-499通过Drp1介导线粒体自噬保护缺氧/复氧心肌细胞[J]. 实用医学杂志, 2023, 39(17): 2196-2203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||