实用医学杂志 ›› 2025, Vol. 41 ›› Issue (18): 2945-2952.doi: 10.3969/j.issn.1006-5725.2025.18.023
• 综述 • 上一篇
李琪1,2,高静2,张铭2(),张栩1,2,冯雅琛1,2,潘蕊1,2,王春晓1,2,任琼迪1,2
收稿日期:
2025-04-15
出版日期:
2025-09-20
发布日期:
2025-09-25
通讯作者:
张铭
E-mail:zhm7919@163.com
基金资助:
Qi LI1,2,Jing GAO2,Ming ZHANG2(),Xu ZHANG1,2,Yachen FENG1,2,Rui PAN1,2,Chunxiao WANG1,2,Qiongdi REN1,2
Received:
2025-04-15
Online:
2025-09-20
Published:
2025-09-25
Contact:
Ming ZHANG
E-mail:zhm7919@163.com
摘要:
卒中后抑郁(PSD)是一种常见的脑卒中并发症,以情绪低落和兴趣减退为主要特征,严重影响患者的康复和生活质量。小胶质细胞的异常活化和极化在PSD的发病机制中扮演关键角色,与神经炎症和神经递质代谢失衡等密切相关。中药以其独特的多靶点、多层次作用机制,能够调节小胶质细胞的功能,改善卒中后的神经炎症环境,促进神经可塑性,从而潜在地改善PSD症状。本文综述了中药对小胶质细胞活化、极化状态的影响,以及其在改善PSD中的研究进展,为临床治疗PSD提供了新的视角和策略。
中图分类号:
李琪,高静,张铭,张栩,冯雅琛,潘蕊,王春晓,任琼迪. 中药调控小胶质细胞改善卒中后抑郁的研究进展[J]. 实用医学杂志, 2025, 41(18): 2945-2952.
Qi LI,Jing GAO,Ming ZHANG,Xu ZHANG,Yachen FENG,Rui PAN,Chunxiao WANG,Qiongdi REN. Modulation of microglia by traditional Chinese medicine improves post⁃stroke depression[J]. The Journal of Practical Medicine, 2025, 41(18): 2945-2952.
表1
单味中药及提取物调控小胶质细胞治疗PSD的作用机制"
分类 | 中药 | 成分 | 作用通路 | 作用靶点 | 参考文献 |
---|---|---|---|---|---|
单味中药及提取物 | 黄芪 | 黄芪甲苷 | NLRP3/Caspase-1信号通路 — | ↓小胶质细胞过度自噬,维持细胞稳态 ↓神经炎症,↑神经元存活,↑神经递质水平 | [ [ |
人参 | 人参皂苷 | — — | ↓小胶质细胞过度活化,↓其释放促炎细胞因子的水平 ↑海马区神经元存活,↑5-HT和DA含量,↑BDNF表达 | [ [ | |
柴胡 | 柴胡皂苷 | — TLR4/NF-κB通路 | 调节甲状腺激素和性激素分泌,调节小胶质细胞与神经内分泌系统的相互作用,↓抑郁症状 调节小胶质细胞的活化和极化状态,↓神经炎症 | [ [ | |
川芎 | 川芎嗪 | — — | ↓小胶质细胞表面受体活化,↓炎症信号的传导,↓小胶质细胞的活化和极化 ↓M1型小胶质细胞相关促炎因子的产生,↑M2型小胶质细胞的极化,↑其抗炎和神经保护作用 | [ [ | |
黄连 | 黄连素 | cAMP/PKA/CREB信号通路 — | ↑抑郁相关神经递质水平,↓小胶质细胞活化,↓炎症因子的产生 ↓小胶质细胞活化程度,↓M1型极化,↑M2型极化 | [ [ | |
清风藤 | 青藤碱 | NF-κB信号通路 多个信号通路 | ↓NF-κB信号通路,↓促炎基因转录,↓小胶质细胞活化和炎症反应 如可通过↓NF-κB调节NLRP3信号通路发挥抗抑郁作用 | [ [ | |
丹参 | 丹参酮ⅡA | BNDF信号通路 — | ↓BNDF信号通路的激活,↓小胶质细胞释放的促炎细胞因子,↓炎症反应 ↓小胶质细胞活化标志物表达,↑IL-10分泌 | [ [ | |
银杏 | 银杏内酯 | MAPK信号通路 — | ↓MAPK信号通路的激活,↓小胶质细胞释放的炎症介质 改善小胶质细胞的极化状态,↑M2型极化,↑其抗炎和神经保护作用 | [ [ | |
白藜芦、葡萄、虎杖、花生、决明等 | 白藜芦醇 | NF-κB信号通路 — | ↓NF-κB信号通路,↓NF-κB的核转位,↓下游促炎基因的表达,调节小胶质细胞功能,↓炎症反应 ↑神经细胞抗氧化防御能力,↑神经元存活和功能,↓炎症介质释放,↓神经炎症对神经元的损伤 | [ [ | |
管花肉苁蓉 | 松果菊苷 | BDNF信号通路 — | 激活BDNF信号通路,进而调节小胶质细胞功能,↓炎症介质释放 ↓细胞凋亡,↓神经炎症对神经元的损伤,同时↑抗氧化系统的抗氧化能力,↑BDNF | [ [ |
表2
中药复方调控小胶质细胞治疗PSD的作用机制"
分类 | 中药 | 成分 | 作用通路 | 作用靶点 | 参考文献 |
---|---|---|---|---|---|
中药复方 | 逍遥散 | 柴胡、当归、炙甘草、 白芍、白术、茯苓 | — — | ↓小胶质细胞活化,↓炎症因子释放,调节神经递质系统功能,↑神经可塑性 ↓M1型相关促炎细胞因子表达,↑M2型相关抗炎细胞因子表达,↑BDNF表达 | [ [ |
柴胡疏肝散 | 陈皮、柴胡、川芎、香附、 枳壳、芍药、甘草 | JAK/STAT3-GSK3β/PTEN/Akt通路 MAPK14和Gria3信号通路 | 通过该通路调节小胶质细胞活化,调节神经递质系统的功能,↑神经可塑性 ↓MAPK14和Gria3信号通路从而发挥作用 | [ [ | |
补阳还五汤 | 黄芪、当归尾、赤芍、地龙、川芎、红花、桃仁 | CREB信号通路 | ↓小胶质细胞的活化,↓释放炎症因子,↑神经元再生和突触可塑性,改善神经递质系统的功能 | [43-44] |
[1] |
TU W J, WANG L D. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. doi:10.1186/s40779-023-00463-x
doi: 10.1186/s40779-023-00463-x |
[2] |
FRANK D, GRUENBAUM B F, ZLOTNIK A, et al. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review[J]. Int J Mol Sci, 2022, 23(23): 15114. doi:10.3390/ijms232315114
doi: 10.3390/ijms232315114 |
[3] | 符家武,吴昊,廖志敏,等. miRNA-146a基因多态性与缺血性卒中后抑郁的相关性[J]. 实用医学杂志,2024,40(19):2708-2712. |
[4] |
MORTENSEN J K, ANDERSEN G. Pharmacological management of post-stroke depression: An update of the evidence and clinical guidance[J]. Expert Opin Pharmacother, 2021, 22(9): 1157-1166. doi:10.1080/14656566.2021.1880566
doi: 10.1080/14656566.2021.1880566 |
[5] |
LU W, WEN J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes[J]. Aging Dis, 2024, 15(1): 394-407. doi:10.14336/ad.2024.0214-1
doi: 10.14336/ad.2024.0214-1 |
[6] |
HU Y, TAO W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction[J]. J Adv Res, 2024, 66: 251-265. doi:10.1016/j.jare.2024.01.006
doi: 10.1016/j.jare.2024.01.006 |
[7] | 王方明,尚文璇,张靖雯,等. 自噬调控小胶质细胞极化在缺血性脑卒中的研究进展[J]. 实用医学杂志,2024,40(9):1324-1330. |
[8] |
LV Z, ZHAO C, WU X, et al. Facile engineered macrophages-derived exosomes-functionalized PLGA nanocarrier for targeted delivery of dual drug formulation against neuroinflammation by modulation of microglial polarization in a post-stroke depression rat model[J]. Biomed Pharmacother, 2024, 179: 117263. doi:10.1016/j.biopha.2024.117263
doi: 10.1016/j.biopha.2024.117263 |
[9] |
ZHANG L, ZHANG L, SUI R. Ganoderic Acid A-Mediated Modulation of Microglial Polarization is Involved in Depressive-Like Behaviors and Neuroinflammation in a Rat Model of Post-Stroke Depression[J]. Neuropsychiatr Dis Treat, 2021, 17: 2671-2681. doi:10.2147/ndt.s317207
doi: 10.2147/ndt.s317207 |
[10] |
ZHANG Y, YANG Y, LI H, et al. Investigating the Potential Mechanisms and Therapeutic Targets of Inflammatory Cytokines in Post-stroke Depression[J]. Mol Neurobiol, 2024, 61(1): 132-147. doi:10.1007/s12035-023-03563-w
doi: 10.1007/s12035-023-03563-w |
[11] |
KNEZEVIC E, NENIC K, MILANOVIC V, et al. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders[J]. Cells, 2023, 12(23): 2726. doi:10.3390/cells12232726
doi: 10.3390/cells12232726 |
[12] |
COLITA D, BURDUSEL D, GLAVAN D, et al. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders[J]. J Affect Disord, 2024, 344: 149-158. doi:10.1016/j.jad.2023.10.037
doi: 10.1016/j.jad.2023.10.037 |
[13] |
MOJTABAVI H, SHAKA Z, MOMTAZMANESH S, et al. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: A systematic review and meta-analysis[J]. J Transl Med, 2022, 20(1): 126. doi:10.1186/s12967-022-03312-y
doi: 10.1186/s12967-022-03312-y |
[14] |
YANG Z, ZHAO Y, WANG Y, et al. Echinacoside ameliorates post-stroke depression by activating BDNF signaling through modulation of Nrf2 acetylation[J]. Phytomedicine, 2024, 128: 155433. doi:10.1016/j.phymed.2024.155433
doi: 10.1016/j.phymed.2024.155433 |
[15] |
LECCA D, JUNG Y J, SCERBA M T, et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis[J]. Alzheimers Dement, 2022, 18(11): 2327-2340. doi:10.1002/alz.12610
doi: 10.1002/alz.12610 |
[16] |
SU P, WU M, YIN X, et al. Modified Xiaoyao San reverses lipopolysaccharide-induced depression-like behavior through suppressing microglia M1 polarization via enhancing autophagy involved in PI3K/Akt/mTOR pathway in mice[J]. J Ethnopharmacol, 2023, 315: 116659. doi:10.1016/j.jep.2023.116659
doi: 10.1016/j.jep.2023.116659 |
[17] |
LI Y, LIU Z, SONG Y, et al. M2 microglia-derived extracellular vesicles promote white matter repair and functional recovery via miR-23a-5p after cerebral ischemia in mice[J]. Theranostics, 2022, 12(7): 3553-3573. doi:10.7150/thno.68895
doi: 10.7150/thno.68895 |
[18] |
WANG J, HOU Y, ZHANG L, et al. Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses[J]. Mol Neurobiol, 2021, 58(3): 1052-1061. doi:10.1007/s12035-020-02171-2
doi: 10.1007/s12035-020-02171-2 |
[19] |
WANG Z, LUO Z, TAN Y, et al. Astragaloside IV alleviates heatstroke brain injury and neuroinflammation in male mice by regulating microglial polarization via the PI3K/Akt signaling pathway[J]. Biomed Pharmacother, 2024, 180: 117545. doi:10.1016/j.biopha.2024.117545
doi: 10.1016/j.biopha.2024.117545 |
[20] |
LI M C, JIA J T, WANG Y X, et al. Astragaloside IV promotes cerebral tissue restoration through activating AMPK-mediated microglia polarization in ischemic stroke rats[J]. J Ethnopharmacol, 2024, 334: 118532. doi:10.1016/j.jep.2024.118532
doi: 10.1016/j.jep.2024.118532 |
[21] |
LI J, GAO W, ZHAO Z, et al. Ginsenoside Rg1 Reduced Microglial Activation and Mitochondrial Dysfunction to Alleviate Depression-Like Behaviour Via the GAS5/EZH2/SOCS3/NRF2 Axis[J]. Mol Neurobiol, 2022, 59(5): 2855-2873. doi:10.1007/s12035-022-02740-7
doi: 10.1007/s12035-022-02740-7 |
[22] |
WANG G, AN T, LEI C, et al. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression[J]. J Ginseng Res, 2022, 46(3): 376-386. doi:10.1016/j.jgr.2021.03.005
doi: 10.1016/j.jgr.2021.03.005 |
[23] |
CHEN S, WANG K, WANG H, et al. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications[J]. Pharmacol Res, 2024, 201: 107090. doi:10.1016/j.phrs.2024.107090
doi: 10.1016/j.phrs.2024.107090 |
[24] |
WANG X, LI S, YU J, et al. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress[J]. J Ethnopharmacol, 2023, 316: 116729. doi:10.1016/j.jep.2023.116729
doi: 10.1016/j.jep.2023.116729 |
[25] |
CHEN Y, PENG F, YANG C, et al. SIRT1 activation by 2,3,5,6-tetramethylpyrazine alleviates neuroinflammation via inhibiting M1 microglia polarization[J]. Front Immunol, 2023, 14: 1206513. doi:10.3389/fimmu.2023.1206513
doi: 10.3389/fimmu.2023.1206513 |
[26] |
FENG X, LI M, LIN Z, et al. Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke[J]. Neurochem Int, 2023, 170: 105607. doi:10.1016/j.neuint.2023.105607
doi: 10.1016/j.neuint.2023.105607 |
[27] |
TANG Y, GAO Y, NIE K, et al. Jiao-tai-wan and its effective component-berberine improve diabetes and depressive disorder through the cAMP/PKA/CREB signaling pathway[J]. J Ethnopharmacol, 2024, 324: 117829. doi:10.1016/j.jep.2024.117829
doi: 10.1016/j.jep.2024.117829 |
[28] |
GE P Y, QU S Y, NI S J, et al. Berberine ameliorates depression-like behavior in CUMS mice by activating TPH1 and inhibiting IDO1 - associated with tryptophan metabolism[J]. Phytother Res, 2023, 37(1): 342-357. doi:10.1002/ptr.7616
doi: 10.1002/ptr.7616 |
[29] |
LIU Z M, ZHANG X L, SUN Y L, et al. Berberine Improves Depression-Like Behaviors and Gastrointestinal Dysfunction in 6-Hydroxydopamine-Induced Parkinson's Disease Rats[J]. Neurogastroenterol Motil, 2025,37(7):e70033. doi:10.1111/nmo.70033
doi: 10.1111/nmo.70033 |
[30] |
SHARMA R, KAMBHAMPATI S P, ZHANG Z, et al. Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury[J]. J Control Release, 2020, 323: 361-375. doi:10.1016/j.jconrel.2020.04.036
doi: 10.1016/j.jconrel.2020.04.036 |
[31] |
LI H, LIN S, QIN T, et al. Senegenin exerts anti-depression effect in mice induced by chronic un-predictable mild stress via inhibition of NF-κB regulating NLRP3 signal pathway[J]. Int Immunopharmacol, 2017, 53: 24-32. doi:10.1016/j.intimp.2017.10.001
doi: 10.1016/j.intimp.2017.10.001 |
[32] |
LIU S Z, YANG J, CHEN L L, et al. Tanshinone IIA ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment in rats through the BDNF/TrkB/GAT1 signaling pathway[J]. Eur J Pharmacol, 2023, 938: 175385. doi:10.1016/j.ejphar.2022.175385
doi: 10.1016/j.ejphar.2022.175385 |
[33] |
HU K B, LU X M, WANG H Y, et al. Effects and mechanisms of tanshinone IIA on PTSD-like symptoms[J]. Phytomedicine, 2023, 120: 155032. doi:10.1016/j.phymed.2023.155032
doi: 10.1016/j.phymed.2023.155032 |
[34] |
ZHANG Y, ZHAO Y, ZHANG J, et al. Ginkgolide B inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization in Aβ(1-42)-induced microglia cells[J]. Neurosci Lett, 2021, 764: 136206. doi:10.1016/j.neulet.2021.136206
doi: 10.1016/j.neulet.2021.136206 |
[35] |
WAN F, ZANG S, YU G, et al. Ginkgolide B Suppresses Methamphetamine-Induced Microglial Activation Through TLR4-NF-κB Signaling Pathway in BV2 Cells[J]. Neurochem Res, 2017, 42(10): 2881-2891. doi:10.1007/s11064-017-2309-6
doi: 10.1007/s11064-017-2309-6 |
[36] |
YANG X, XU S, QIAN Y, et al. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury[J]. Brain Behav Immun, 2017, 64: 162-172. doi:10.1016/j.bbi.2017.03.003
doi: 10.1016/j.bbi.2017.03.003 |
[37] |
BAI Y, SUI R, ZHANG L, et al. Resveratrol Improves Cognitive Function in Post-stroke Depression Rats by Repressing Inflammatory Reactions and Oxidative Stress via the Nrf2/HO-1 Pathway[J]. Neuroscience, 2024, 541: 50-63. doi:10.1016/j.neuroscience.2024.01.017
doi: 10.1016/j.neuroscience.2024.01.017 |
[38] |
LU R, ZHANG L, WANG H, et al. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway[J]. Front Pharmacol, 2022, 13: 993483. doi:10.3389/fphar.2022.993483
doi: 10.3389/fphar.2022.993483 |
[39] |
YANG Y, ZHONG Z, WANG B, et al. Xiaoyao San ameliorates high-fat diet-induced anxiety and depression via regulating gut microbiota in mice[J]. Biomed Pharmacother, 2022, 156: 113902. doi:10.1016/j.biopha.2022.113902
doi: 10.1016/j.biopha.2022.113902 |
[40] |
WANG Y T, WANG X L, WANG Z Z, et al. Antidepressant effects of the traditional Chinese herbal formula Xiao-Yao-San and its bioactive ingredients[J]. Phytomedicine, 2023, 109: 154558. doi:10.1016/j.phymed.2022.154558
doi: 10.1016/j.phymed.2022.154558 |
[41] |
FAN Q, LIU Y, SHENG L, et al. Chaihu-Shugan-San inhibits neuroinflammation in the treatment of post-stroke depression through the JAK/STAT3-GSK3β/PTEN/Akt pathway[J]. Biomed Pharmacother, 2023, 160: 114385. doi:10.1016/j.biopha.2023.114385
doi: 10.1016/j.biopha.2023.114385 |
[42] |
LIU Q, SUN N N, WU Z Z, et al. Chaihu-Shugan-San exerts an antidepressive effect by downregulating miR-124 and releasing inhibition of the MAPK14 and Gria3 signaling pathways[J]. Neural Regen Res, 2018, 13(5): 837-845. doi:10.4103/1673-5374.232478
doi: 10.4103/1673-5374.232478 |
[43] |
LI M Z, ZHUANG Y M, LI M C, et al. Buyang Huanwu decoction promotes gray and white matter remyelination by inhibiting Notch signaling activation in the astrocyte and microglia after ischemic stroke[J]. J Ethnopharmacol, 2025, 343: 119440. doi:10.1016/j.jep.2025.119440
doi: 10.1016/j.jep.2025.119440 |
[44] |
MO J, LIAO W, DU J, et al. Buyang huanwu decoction improves synaptic plasticity of ischemic stroke by regulating the cAMP/PKA/CREB pathway[J]. J Ethnopharmacol, 2024, 335: 118636. doi:10.1016/j.jep.2024.118636
doi: 10.1016/j.jep.2024.118636 |
[45] | 孙硕,张文洁,赵益,等.昼夜节律基因调控消化系统肿瘤及中药干预作用的研究进展[J].实用医学杂志,2025,41(5):648-656. |
[1] | 孙硕,张文洁,赵益,孙有智. 昼夜节律基因调控消化系统肿瘤及中药干预作用的研究进展[J]. 实用医学杂志, 2025, 41(5): 648-656. |
[2] | 吴兴卫,王建营,郭成晓,刘紫仪,孙超,于飞. 瑞马唑仑调节ROS/RAGE/NF-κB信号通路对LPS诱导的小胶质细胞炎症的影响[J]. 实用医学杂志, 2025, 41(2): 153-161. |
[3] | 王超,徐倩倩,张书绢,朱艳萍. 人脐带间充质干细胞衍生的外泌体对新生大鼠脑白质损伤小胶质细胞极化的影响[J]. 实用医学杂志, 2025, 41(16): 2447-2454. |
[4] | 王方明,尚文璇,张靖雯,吉盈肖,李俐涛. 自噬调控小胶质细胞极化在缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(9): 1324-1330. |
[5] | 石喆,左夏林,彭林辉,卢志伟,李孔平. M1型小胶质细胞极化在大脑皮层梗死后继发丘脑损伤中的作用[J]. 实用医学杂志, 2024, 40(22): 3138-3145. |
[6] | 符家武,吴昊,廖志敏,陈婧,李君良. miRNA-146a基因多态性与缺血性卒中后抑郁的相关性[J]. 实用医学杂志, 2024, 40(19): 2708-2712. |
[7] | 窦鑫,贺昌辉,梅笑,潘海迪,马源鑫,王伟. 基于“短链脂肪酸-肠屏障”途径探讨中药在腹泻型肠易激综合征中的干预研究进展[J]. 实用医学杂志, 2024, 40(15): 2177-2182. |
[8] | 孙茹雪,朱梦莉,刘晶晶,陈飞. Raf激酶抑制剂蛋白信号通路表达影响小胶质细胞极化对脑出血大鼠的神经保护机制[J]. 实用医学杂志, 2024, 40(14): 1935-1940. |
[9] | 聂勇,朱俊琛,李迎春,马幸福,苏毅,王超,熊应宗,李富友. 基于激痛点理论的针刀联合中药膏摩对胸背肌筋膜炎患者的影响及机制研究[J]. 实用医学杂志, 2023, 39(17): 2265-2270. |
[10] | 袁静 夏金婵 郭晓琦 江华. 基于巨噬细胞可塑性的中药防治急性肺损伤的研究进展[J]. 实用医学杂志, 2022, 38(5): 644-649. |
[11] | 金博文 李东娜 庄朋伟 郭虹 张艳军. 丘脑脑源性神经生长因子-酪氨酸激酶受体B信号介导脑缺血诱发的痛觉过敏 [J]. 实用医学杂志, 2022, 38(21): 2663-2669. |
[12] | 徐志荣 买娟娟 王丽 刘国莲 白亚茹 马佳慧 姚文莲 . 健康行为互动模式的家庭访视护理在社区脑卒中患者中的应用 [J]. 实用医学杂志, 2022, 38(20): 2614-2619. |
[13] | 汤诗怡 赖梅菁 邱美茜 詹丽璇 . 小胶质细胞介导的突触修剪在慢性脑缺血中的作用及其机制 [J]. 实用医学杂志, 2022, 38(20): 2624-2629. |
[14] | 李虹莹 沈缘 吴巧凤 谢璐霜, 余曙光 . 小胶质细胞极化信号通路在神经炎症中的研究进展[J]. 实用医学杂志, 2022, 38(14): 1838-1846. |
[15] | 周方方, 蒲卢兰, 荣欣欣, 刘家有, 杨懿, 刘文娜. 中药汤剂联合西药治疗新型冠状病毒肺炎的疗效与安全性的Meta分析 [J]. 实用医学杂志, 2021, 37(5): 564-568. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||