实用医学杂志 ›› 2024, Vol. 40 ›› Issue (16): 2229-2235.doi: 10.3969/j.issn.1006-5725.2024.16.006
卢刚刚1,李生龙1,赵永强2(),贾云鹏2,梁永林3,赵渊博1
收稿日期:
2024-02-21
出版日期:
2024-08-25
发布日期:
2024-08-26
通讯作者:
赵永强
E-mail:1114221808@qq.com
作者简介:
基金资助:
Ganggang LU1,Shenglong LI1,Yongqiang ZHAO2(),Yunpeng JIA2,Yonglin LIANG3,Yuanbo. ZHAO1
Received:
2024-02-21
Online:
2024-08-25
Published:
2024-08-26
Contact:
Yongqiang ZHAO
E-mail:1114221808@qq.com
摘要:
糖尿病型阳痿(DMED)是临床上常见糖尿病相关的血管、内分泌及神经病变,DMED患者常表现为勃起困难、勃起所需时间延长、硬度差、性交时间短等症状。其病因机制复杂,常与氧化应激(OS)、炎症反应、神经及内分泌病变等众多因素密切相关,上述因素往往交叉反应,促进DMED病变进展。近年来相关研究表明,OS与铁死亡在DMED中起着关键型作用:OS可致糖尿病患者神经、内分泌功能异常,阴茎血管内皮的合成或生物利用度下降,海绵状内皮细胞功能障碍和平滑肌舒张功能减低,从而导致阴茎勃起障碍;而铁死亡经证实也与DMED密切相关,控制OS和铁死亡以改善糖尿病患者的勃起功能是合理有效的治疗路径,但铁死亡导致DMED的作用机制尚有待进一步研究。因此,文章综述了OS与铁死亡和DMED相关性的最新信息,为探索DMED发生机制、临床防治DMED提供有益参考,并为该领域未来的研究提供潜在方向。
中图分类号:
卢刚刚,李生龙,赵永强,贾云鹏,梁永林,赵渊博. 氧化应激与铁死亡在糖尿病型阳痿中的相关性研究进展[J]. 实用医学杂志, 2024, 40(16): 2229-2235.
Ganggang LU,Shenglong LI,Yongqiang ZHAO,Yunpeng JIA,Yonglin LIANG,Yuanbo. ZHAO. Research progress on the correlation between oxidative stress and ferroptosis in diabetic impotence[J]. The Journal of Practical Medicine, 2024, 40(16): 2229-2235.
1 |
LI B, HU P, LIU K, et al. MiRNA‐100 ameliorates diabetes mellitus‐induced erectile dysfunction by modulating autophagy, anti‐inflammatory, and antifibrotic effects[J]. Andrology, 2024.doi: 10.1111/andr.13586 .
doi: 10.1111/andr.13586 |
2 |
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. doi:10.1016/j.diabres.2023.110945
doi: 10.1016/j.diabres.2023.110945 |
3 | LIU D F, JIANG H, HONG K, et al. Influence of erectile dysfunction course on its progress and efficacy of treatment with phosphodiesterase type 5 inhibitors[J]. Chin Med J (Engl), 2010, 123(22): 3258-3261. |
4 |
LI K, ZHU A, GUTMAN J, et al. Cysteine-Rich Whey Protein Isolate (CR-WPI) Ameliorates Erectile Dysfunction by Diminishing Oxidative Stress via DDAH/ADMA/NOS Pathway[J]. Oxid Med Cell Longev, 2022, 2022: 8151917. doi:10.1155/2022/8151917
doi: 10.1155/2022/8151917 |
5 |
LI S, ZHENG L, ZHANG J, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy[J]. Free Radic Biol Med, 2021, 162: 435-449. doi:10.1016/j.freeradbiomed.2020.10.323
doi: 10.1016/j.freeradbiomed.2020.10.323 |
6 |
LI W, LI W, LENG Y, et al. Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury Through Endoplasmic Reticulum Stress[J]. DNA Cell Biol, 2020, 39(2): 210-225. doi:10.1089/dna.2019.5097
doi: 10.1089/dna.2019.5097 |
7 |
ZHU Z, DUAN P, SONG H, et al. Downregulation of Circular RNA PSEN1 ameliorates ferroptosis of the high glucose treated retinal pigment epithelial cells via miR-200b-3p/cofilin-2 axis[J]. Bioengineered, 2021, 12(2): 12555-12567. doi:10.1080/21655979.2021.2010369
doi: 10.1080/21655979.2021.2010369 |
8 |
HAO L, MI J, SONG L, et al. SLC40A1 Mediates Ferroptosis and Cognitive Dysfunction in Type 1 Diabetes[J]. Neuroscience, 2021, 463: 216-226. doi:10.1016/j.neuroscience.2021.03.009
doi: 10.1016/j.neuroscience.2021.03.009 |
9 |
WANG X, MA H, SUN J, et al. Mitochondrial Ferritin Deficiency Promotes Osteoblastic Ferroptosis Via Mitophagy in Type 2 Diabetic Osteoporosis[J]. Biol Trace Elem Res, 2022, 200(1): 298-307. doi:10.1007/s12011-021-02627-z
doi: 10.1007/s12011-021-02627-z |
10 |
SHAMLOUL R, GHANEM H. Erectile dysfunction[J]. Lancet, 2013, 381(9861): 153-165. doi:10.1016/s0140-6736(12)60520-0
doi: 10.1016/s0140-6736(12)60520-0 |
11 |
LI H, CHEN L P, WANG T, et al. Calpain inhibition improves erectile function in diabetic mice via upregulating endothelial nitric oxide synthase expression and reducing apoptosis[J]. Asian J Androl, 2018, 20(4): 342-348. doi:10.4103/aja.aja_63_17
doi: 10.4103/aja.aja_63_17 |
12 |
ROYCHOUDHURY S, CHAKRABORTY S, CHOUDHURY A P, et al. Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction[J]. Antioxidants (Basel), 2021, 10(6): 837. doi:10.3390/antiox10060837
doi: 10.3390/antiox10060837 |
13 |
ZIRKIN B R, CHEN H. Regulation of Leydig cell steroidogenic function during aging[J]. Biol Reprod, 2000, 63(4): 977-981. doi:10.1095/biolreprod63.4.977
doi: 10.1095/biolreprod63.4.977 |
14 |
JEREMY J Y, JONES R A, KOUPPARIS A J, et al. Reactive oxygen species and erectile dysfunction: possible role of NADPH oxidase[J]. Int J Impot Res, 2007, 19(3): 265-280. doi:10.1038/sj.ijir.3901523
doi: 10.1038/sj.ijir.3901523 |
15 |
ZHANG L, HE Y, JIANG Y, et al. PRMT1 reverts the immune escape of necroptotic colon cancer through RIP3 methylation[J]. Cell Death Dis, 2023, 14(4): 233. doi:10.1038/s41419-023-05752-w
doi: 10.1038/s41419-023-05752-w |
16 |
GAJECKI D, GAWRYS J, WISNIEWSKI J, et al. A Cross-Talk between the Erythrocyte L-Arginine/ADMA/Nitric Oxide Metabolic Pathway and the Endothelial Function in Subjects with Type 2 Diabetes Mellitus[J]. Nutrients, 2021, 13(7): 2306. doi:10.3390/nu13072306
doi: 10.3390/nu13072306 |
17 |
HU L L, ZHANG K Q, TIAN T, et al. Probucol improves erectile function via Activation of Nrf2 and coordinates the HO-1/ DDAH/PPAR-γ/eNOS pathways in streptozotocin-induced diabetic rats[J]. Biochem Biophys Res Commun, 2018, 507(1/4): 9-14. doi:10.1016/j.bbrc.2018.10.036
doi: 10.1016/j.bbrc.2018.10.036 |
18 |
CHEN D, ZHANG K Q, LI B, et al. Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway[J]. Asian J Androl, 2017, 19(3): 291-297. doi:10.4103/1008-682x.178486
doi: 10.4103/1008-682x.178486 |
19 |
SUN T, XU W, WANG J, et al. Saxagliptin alleviates erectile dysfunction through increasing stromal cell‐derived factor‐1 in diabetes mellitus[J]. Andrology, 2023, 11(2): 295-306. doi:10.1111/andr.13296
doi: 10.1111/andr.13296 |
20 |
GALHOM R A, KORAYEM H E, IBRAHIM M A, et al. Urine-Derived Stem Cells Versus Their Lysate in Ameliorating Erectile Dysfunction in a Rat Model of Type 2 Diabetes[J]. Front Physiol, 2022, 13: 854949. doi:10.3389/fphys.2022.854949
doi: 10.3389/fphys.2022.854949 |
21 |
VOLPE C M O, VILLAR-DELFINO P H, DOS ANJOS P M F, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2): 119. doi:10.1038/s41419-017-0135-z
doi: 10.1038/s41419-017-0135-z |
22 |
DURAN A M, BEESON W L, FIREK A, et al. Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation Upregulates Protective Cellular Pathways in Patients with Type 2 Diabetes Exhibiting Improvement in Painful Diabetic Neuropathy[J]. Nutrients, 2022, 14(4): 761. doi:10.3390/nu14040761
doi: 10.3390/nu14040761 |
23 |
EISA N H, HELMY S A, EL-KASHEF D H, et al. Pramipexole protects against diabetic neuropathy: Effect on oxidative stress, TLR4/IRAK-1/TRAF-6/NF-κB and downstream inflammatory mediators[J]. Int Immunopharmacol, 2024, 128: 111514. doi:10.1016/j.intimp.2024.111514
doi: 10.1016/j.intimp.2024.111514 |
24 |
ZHANG L, BAO B, GUO J, et al. Current status and prospects of diabetes mellitus induced erectile dysfunction: A bibliometric and visualization study[J]. Front Endocrinol (Lausanne), 2023, 14: 1168744. doi:10.3389/fendo.2023.1168744
doi: 10.3389/fendo.2023.1168744 |
25 |
PAUL A, KUMAR M, DAS P, et al. Drug repurposing⁃A search for novel therapy for the treatment of diabetic neuropathy[J]. Biomed Pharmacother, 2022, 156: 113846. doi:10.1016/j.biopha.2022.113846
doi: 10.1016/j.biopha.2022.113846 |
26 |
ESCOBAR-MORREALE H F, MARTINEZ-GARCIA M A, MONTES-NIETO R, et al. Effects of glucose ingestion on circulating inflammatory mediators: Influence of sex and weight excess[J]. Clin Nutr, 2017, 36(2): 522-529. doi:10.1016/j.clnu.2016.01.015
doi: 10.1016/j.clnu.2016.01.015 |
27 |
WANG Y, LI J, HUANG Y, et al. Tripartite motif⁃containing 28 bridges endothelial inflammation and angiogenic activity by retaining expression of TNFR‐1 and -2 and VEGFR2 in endothelial cells[J]. FASEB J, 2017, 31(5): 2026-2036. doi:10.1096/fj.201600988rr
doi: 10.1096/fj.201600988rr |
28 |
NEMKOV T, SUN K, REISZ J A, et al. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage[J]. Haematologica, 2018, 103(2): 361-372. doi:10.3324/haematol.2017.178608
doi: 10.3324/haematol.2017.178608 |
29 |
ROJAS D R, TEGEDER I, KUNER R, et al. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species[J]. J Mol Med (Berl), 2018, 96(12): 1395-1405. doi:10.1007/s00109-018-1707-9
doi: 10.1007/s00109-018-1707-9 |
30 |
MORELLO E, SUTTI S, FOGLIA B, et al. Hypoxia‐inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine‐rich glycoprotein[J]. Hepatology, 2018, 67(6): 2196-2214. doi:10.1002/hep.29754
doi: 10.1002/hep.29754 |
31 |
CAROTA I A, KENIG-KOZLOVSKY Y, ONAY T, et al. Targeting VE-PTP phosphatase protects the kidney from diabetic injury[J]. J Exp Med, 2019, 216(4): 936-949. doi:10.1084/jem.20180009
doi: 10.1084/jem.20180009 |
32 |
DUCSAY C A, GOYAL R, PEARCE W J, et al. Gestational Hypoxia and Developmental Plasticity[J]. Physiol Rev, 2018, 98(3): 1241-1334. doi:10.1152/physrev.00043.2017
doi: 10.1152/physrev.00043.2017 |
33 |
JAIN T, NIKOLOPOULOU E A, XU Q, et al. Hypoxia inducible factor as a therapeutic target for atherosclerosis[J]. Pharmacol Ther, 2018, 183: 22-33. doi:10.1016/j.pharmthera.2017.09.003
doi: 10.1016/j.pharmthera.2017.09.003 |
34 |
PHE V, ROUPRET M. Erectile dysfunction and diabetes: a review of the current evidence-based medicine and a synthesis of the main available therapies[J]. Diabetes Metab, 2012, 38(1): 1-13. doi:10.1016/j.diabet.2011.09.003
doi: 10.1016/j.diabet.2011.09.003 |
35 |
刘洋, 孙岳, 杨安宁, 等. 铁死亡参与高脂饮食诱导的ApoE-/-小鼠动脉粥样硬化及ox-LDL诱导的泡沫细胞形成过程[J]. 实用医学杂志, 2021, 37(5): 585-590. doi:10.3969/j.issn.1006-5725.2021.05.006
doi: 10.3969/j.issn.1006-5725.2021.05.006 |
36 |
LI W, LI W, WANG Y, et al. Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury[J]. Cell Death Discov, 2021, 7(1): 267. doi:10.1038/s41420-021-00656-0
doi: 10.1038/s41420-021-00656-0 |
37 |
YAN H F, ZOU T, TUO Q Z, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. doi:10.1038/s41392-020-00428-9
doi: 10.1038/s41392-020-00428-9 |
38 |
ZHANG S, BEI Y, HUANG Y, et al. Induction of ferroptosis promotes vascular smooth muscle cell phenotypic switching and aggravates neointimal hyperplasia in mice[J]. Mol Med, 2022, 28(1): 121. doi:10.1186/s10020-022-00549-7
doi: 10.1186/s10020-022-00549-7 |
39 |
HUANG Z, MA Y, SUN Z, et al. Ferroptosis: potential targets and emerging roles in pancreatic diseases[J]. Arch Toxicol, 2024, 98(1): 75-94. doi:10.1007/s00204-023-03625-x
doi: 10.1007/s00204-023-03625-x |
40 |
STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease[J]. Cell, 2017, 171(2): 273-285. doi:10.1016/j.cell.2017.09.021
doi: 10.1016/j.cell.2017.09.021 |
41 |
LUO E F, LI H X, QIN Y H, et al. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction[J]. World J Diabetes, 2021, 12(2): 124-137. doi:10.4239/wjd.v12.i2.124
doi: 10.4239/wjd.v12.i2.124 |
42 |
FANG X, ARDEHALI H, MIN J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(1): 7-23. doi:10.1038/s41569-022-00735-4
doi: 10.1038/s41569-022-00735-4 |
43 |
CHEN P, CHEN Z, ZHAI J, et al. Overexpression of PRDX2 in Adipose-Derived Mesenchymal Stem Cells Enhances the Therapeutic Effect in a Neurogenic Erectile Dysfunction Rat Model by Inhibiting Ferroptosis[J]. Oxid Med Cell Longev, 2023, 2023: 4952857. doi:10.1155/2023/4952857
doi: 10.1155/2023/4952857 |
44 |
FENG H, LIU Q, DENG Z, et al. Human umbilical cord mesenchymal stem cells ameliorate erectile dysfunction in rats with diabetes mellitus through the attenuation of ferroptosis[J]. Stem Cell Res Ther, 2022, 13(1): 450. doi:10.1186/s13287-022-03147-w
doi: 10.1186/s13287-022-03147-w |
45 |
WANG Y, ZHANG X, CHEN Y, et al. Identification of hub biomarkers and exploring the roles of immunity, M6A, ferroptosis, or cuproptosis in rats with diabetic erectile dysfunction[J]. Andrology, 2023, 11(2): 316-331. doi:10.1111/andr.13265
doi: 10.1111/andr.13265 |
46 |
XU W, SUN T, WANG J, et al. GPX4 Alleviates Diabetes Mellitus-Induced Erectile Dysfunction by Inhibiting Ferroptosis[J]. Antioxidants (Basel), 2022, 11(10): 1896. doi:10.3390/antiox11101896
doi: 10.3390/antiox11101896 |
47 |
DU S, SHI H, XIONG L, et al. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy[J]. Front Endocrinol (Lausanne), 2022, 13: 1011669. doi:10.3389/fendo.2022.1011669
doi: 10.3389/fendo.2022.1011669 |
48 |
王赛, 高静. 富马酸二甲酯对过氧化氢诱导心脏微血管内皮细胞铁死亡的影响[J]. 实用医学杂志, 2023, 39(12): 1494-1499. doi:10.3969/j.issn.1006-5725.2023.12.006
doi: 10.3969/j.issn.1006-5725.2023.12.006 |
49 |
FENG X, WANG S, SUN Z, et al. Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1α/HO-1 Pathway in db/db Mice[J]. Front Endocrinol (Lausanne), 2021, 12: 626390. doi:10.3389/fendo.2021.626390
doi: 10.3389/fendo.2021.626390 |
50 |
WU Y, ZHAO Y, YANG H Z, et al. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose[J]. Biosci Rep, 2021, 41(2): BSR20202924. doi:10.1042/bsr20202924
doi: 10.1042/bsr20202924 |
[1] | 袁宸,赵霞,吴嘉宝,严花. S1P在哮喘中的研究现状及应用前景[J]. 实用医学杂志, 2024, 40(7): 936-940. |
[2] | 蔡康林,张婧恺,冉亮弟,胡大军,冯知涛,黄慧莲. 柴胡-白芍配伍抗抑郁药理作用机制研究进展[J]. 实用医学杂志, 2024, 40(4): 447-452. |
[3] | 刘永辉,谭庆晶,陈清,韦理萍,杨俊威,杨侃,高玉广. miR-421靶向调控Menin/Caspase-3影响抑郁症的机制[J]. 实用医学杂志, 2024, 40(4): 453-459. |
[4] | 高山,季坤,赵丽,邢妤佳,谢燕东,蔡习强. 食管鳞状上皮内瘤变的研究进展[J]. 实用医学杂志, 2024, 40(3): 432-438. |
[5] | 刘路,祝筱姬,钟玉绪. 慢性咳嗽:现状与展望[J]. 实用医学杂志, 2024, 40(21): 3107-3112. |
[6] | 姜盛楠,支文冰,陈静,孙婷婷,许宗仁,刘帅,张红,李晔,刘洋. 白刺花叶总生物碱通过抑制MAPK/NF-κB信号通路减轻脂多糖诱导的RAW264.7细胞炎症反应[J]. 实用医学杂志, 2024, 40(20): 2835-2840. |
[7] | 俞天悦,郭茜,胡昊,苏宇静,陈剑华. 精神分裂症中氧化应激相关通路与诊断和预测价值的研究进展[J]. 实用医学杂志, 2024, 40(20): 2935-2940. |
[8] | 李小琴,汪乐新,马小军,李娜,卢冠军,张智涵,张鹏程. 高同型半胱氨酸经TRPC6/NF⁃κB诱导肾小球足细胞铁死亡的机制[J]. 实用医学杂志, 2024, 40(2): 174-181. |
[9] | 刘洁琼,姚雅俪,隋倩,李科,黄芳,曹永清. 沙库巴曲缬沙坦钠片预防多柔比星所致心脏毒性的机制[J]. 实用医学杂志, 2024, 40(2): 188-194. |
[10] | 孙云龙,孟哲,王喜甲,高路. 利拉鲁肽通过NRF2改善高糖诱导的内皮细胞损伤[J]. 实用医学杂志, 2024, 40(15): 2051-2055. |
[11] | 窦鑫,贺昌辉,梅笑,潘海迪,马源鑫,王伟. 基于“短链脂肪酸-肠屏障”途径探讨中药在腹泻型肠易激综合征中的干预研究进展[J]. 实用医学杂志, 2024, 40(15): 2177-2182. |
[12] | 黄山高,吴月玲,张颖. 瞄准未来:卵巢癌靶向治疗的新进展[J]. 实用医学杂志, 2024, 40(14): 1901-1907. |
[13] | 龙淳,毕红英,杨昌珍,王家锴,唐艳,刘旭. 大黄素上调Sirt2减轻脂多糖致RAW264.7细胞的氧化应激反应[J]. 实用医学杂志, 2024, 40(13): 1785-1790. |
[14] | 薛茹月,李悦娴,孙德峰. 星状神经节阻滞改善术后认知功能障碍研究进展[J]. 实用医学杂志, 2024, 40(11): 1500-1504. |
[15] | 袁海霞,韩新民,陈天翼,宋宇尘. 注意缺陷多动障碍患儿大脑皮质结构异常研究进展[J]. 实用医学杂志, 2024, 40(10): 1455-1459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||