1 |
PECHA S, KIRCHHOF P, REISSMANN B. Perioperative Arrhythmias[J]. Dtsch Arztebl Int, 2023,120(33/34): 564-574.
|
2 |
THOMPSON A, BALSER J R. Perioperative cardiac arrhythmias[J]. Br J Anaesth, 2004,93(1): 86-94. doi:10.1093/bja/aeh166
doi: 10.1093/bja/aeh166
|
3 |
YANG D, DESCHÊNES I, FU J. Multilayer control of cardiac electrophysiology by microRNAs[J]. J Mol Cell Cardiol, 2022,166: 107-115. doi:10.1016/j.yjmcc.2022.02.007
doi: 10.1016/j.yjmcc.2022.02.007
|
4 |
SURINA S, FONTANELLA R A, SCISCIOLA L, et al. miR-21 in Human Cardiomyopathies[J]. Front Cardiovasc Med, 2021,8: 767064. doi:10.3389/fcvm.2021.767064
doi: 10.3389/fcvm.2021.767064
|
5 |
ZENG Y, WU N, ZHANG Z, et al. Non-coding RNA and arrhythmias: expression, function, and molecular mechanism[J]. Europace, 2023,25(4):1296-1308. doi:10.1093/europace/euad047
doi: 10.1093/europace/euad047
|
6 |
VARRÓ A, TOMEK J, NAGY N, et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior[J]. Physiol Rev, 2021,101(3): 1083-1176. doi:10.1152/physrev.00024.2019
doi: 10.1152/physrev.00024.2019
|
7 |
KANG G, XIE A, LIU H, et al. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel[J]. JCI Insight, 2020,5(23):e140759. doi:10.1172/jci.insight.140759
doi: 10.1172/jci.insight.140759
|
8 |
PETKOVA M, ATKINSON A J, YANNI J, et al. Identification of Key Small Non-Coding MicroRNAs Controlling Pacemaker Mechanisms in the Human Sinus Node[J]. J Am Heart Assoc, 2020,9(20): e16590. doi:10.1161/jaha.120.016590
doi: 10.1161/jaha.120.016590
|
9 |
LIU X, ZHANG Y, DU W, et al. MiR-223-3p as a Novel MicroRNA Regulator of Expression of Voltage-Gated K+ Channel Kv4.2 in Acute Myocardial Infarction[J]. Cell Physiol Biochem, 2016,39(1): 102-114. doi:10.1159/000445609
doi: 10.1159/000445609
|
10 |
MATKOVICH S J, WANG W, TU Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circ Res, 2010,106(1): 166-175. doi:10.1161/circresaha.109.202176
doi: 10.1161/circresaha.109.202176
|
11 |
LU Y, ZHANG Y, WANG N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010: 122(23):2378-2387. doi:10.1161/circulationaha.110.958967
doi: 10.1161/circulationaha.110.958967
|
12 |
LING T, WANG X, CHAI Q, et al. Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation[J]. BBA Clin, 2017,7: 78-84. doi:10.1016/j.bbacli.2017.02.002
doi: 10.1016/j.bbacli.2017.02.002
|
13 |
JIA X, ZHENG S, XIE X, et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model[J]. PLoS One, 2013,8(12): e85639. doi:10.1371/journal.pone.0085639
doi: 10.1371/journal.pone.0085639
|
14 |
LI N, ZHOU H, TANG Q. miR-133: A Suppressor of Cardiac Remodeling?[J]. Front Pharmacol, 2018,9: 903. doi:10.3389/fphar.2018.00903
doi: 10.3389/fphar.2018.00903
|
15 |
YANG B, LIN H, XIAO J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007,13(4): 486-491. doi:10.1038/nm1569
doi: 10.1038/nm1569
|
16 |
LUO X, PAN Z, SHAN H, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation[J]. J Clin Invest, 2013,123(5): 1939-1951. doi:10.1172/jci62185
doi: 10.1172/jci62185
|
17 |
FITZPATRICK C M. MicroRNA directly modulates cardiac ion channel[J]. Nat Rev Cardiol, 2021,18(5): 308. doi:10.1038/s41569-021-00540-5
doi: 10.1038/s41569-021-00540-5
|
18 |
PETKOVA M, ATKINSON A J, YANNI J, et al. Identification of Key Small Non-Coding MicroRNAs Controlling Pacemaker Mechanisms in the Human Sinus Node[J]. J Am Heart Assoc, 2020,9(20): e16590. doi:10.1161/jaha.120.016590
doi: 10.1161/jaha.120.016590
|
19 |
YANNI J, D'SOUZA A, WANG Y, et al. Silencing miR-370-3p rescues funny current and sinus node function in heart failure[J]. Sci Rep, 2020,10(1): 11279. doi:10.1038/s41598-020-67790-0
doi: 10.1038/s41598-020-67790-0
|
20 |
LI N, ARTIGA E, KALYANASUNDARAM A, et al. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node[J]. Sci Rep, 2021,11(1): 19328. doi:10.1038/s41598-021-98580-x
doi: 10.1038/s41598-021-98580-x
|
21 |
TERENTYEV D, BELEVYCH A E, TERENTYEVA R, et al. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2[J]. Circ Res, 2009,104(4): 514-521. doi:10.1161/circresaha.108.181651
doi: 10.1161/circresaha.108.181651
|
22 |
PARK J, KHO C. MicroRNAs and Calcium Signaling in Heart Disease[J]. Int J Mol Sci, 2021,22(19):10582. doi:10.3390/ijms221910582
doi: 10.3390/ijms221910582
|
23 |
CHENG W, KAO Y, CHAO T, et al. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmia[J]. Acta Physiol (Oxf), 2019,227(3): e13322. doi:10.1111/apha.13322
doi: 10.1111/apha.13322
|
24 |
HAN B, TREW M L, ZGIERSKI-JOHNSTON C M. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis[J]. Cells, 2021,10(11):2923. doi:10.3390/cells10112923
doi: 10.3390/cells10112923
|
25 |
YI J, DUAN H, CHEN K, et al. Cardiac Electrophysiological Changes and Downregulated Connexin 43 Prompts Reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in Isolated Rat Hearts[J]. J Cardiovasc Transl Res, 2022,15(6): 1464-1473. doi:10.1007/s12265-022-10256-7
doi: 10.1007/s12265-022-10256-7
|
26 |
ZHAO Y, RANSOM J F, LI A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007,129(2): 303-317. doi:10.1016/j.cell.2007.03.030
doi: 10.1016/j.cell.2007.03.030
|
27 |
CALLIS T E, PANDYA K, SEOK H Y, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J]. J Clin Invest, 2009,119(9): 2772-2786. doi:10.1172/jci36154
doi: 10.1172/jci36154
|
28 |
WANG J, XU L, TIAN L, et al. Circulating microRNA-208 family as early diagnostic biomarkers for acute myocardial infarction: A meta-analysis[J]. Medicine, 2021,100(51): e27779. doi:10.1097/md.0000000000027779
doi: 10.1097/md.0000000000027779
|
29 |
DHEIN S, SALAMEH A. Remodeling of Cardiac Gap Junctional Cell-Cell Coupling[J]. Cells, 2021,10(9):2422. doi:10.3390/cells10092422
doi: 10.3390/cells10092422
|
30 |
BILLUR D, OLGAR Y, TURAN B. Intracellular Redistribution of Left Ventricular Connexin 43 Contributes to the Remodeling of Electrical Properties of the Heart in Insulin-resistant Elderly Rats[J]. J Histochem Cytochem, 2022,70(6): 447-462. doi:10.1369/00221554221101661
doi: 10.1369/00221554221101661
|
31 |
OSBOURNE A, CALWAY T, BROMAN M, et al. Downregulation of connexin43 by microRNA-130a in cardiomyocytes results in cardiac arrhythmias[J]. J Mol Cell Cardiol, 2014,74: 53-63. doi:10.1016/j.yjmcc.2014.04.024
doi: 10.1016/j.yjmcc.2014.04.024
|
32 |
WANG N, SUN L, ZHANG S, et al. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1[J]. Int J Biol Sci, 2015,11(4): 390-403. doi:10.7150/ijbs.10930
doi: 10.7150/ijbs.10930
|
33 |
NAPPI F, IERVOLINO A, AVTAAR SINGH S S, et al. MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets[J]. Int J Mol Sci, 2021,22(22):12132. doi:10.3390/ijms222212132
doi: 10.3390/ijms222212132
|