The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (10): 1590-1596.doi: 10.3969/j.issn.1006-5725.2025.10.023
• Reviews • Previous Articles
Guizhi KE,Yu HUANG,Liping FU,Binhua ZOU,Gang. LIU()
Received:
2025-01-09
Online:
2025-05-25
Published:
2025-05-21
Contact:
Gang. LIU
E-mail:lg2781@smu.edu.cn
CLC Number:
Guizhi KE,Yu HUANG,Liping FU,Binhua ZOU,Gang. LIU. Research progress on matrix⁃chondrocyte interactions in osteoarthritis[J]. The Journal of Practical Medicine, 2025, 41(10): 1590-1596.
1 |
OZEKI N, KOGA H, SEKIYA I. Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment[J]. Life (Basel), 2022, 12(4):603. doi:10.3390/life12040603
doi: 10.3390/life12040603 |
2 |
XIE J, LI S, SONG Z, et al. Functional Monitoring of Patients With Knee Osteoarthritis Based on Multidimensional Wearable Plantar Pressure Features: Cross-Sectional Study[J]. JMIR Aging, 2024, 7:e58261. doi:10.2196/58261
doi: 10.2196/58261 |
3 |
WANG F, CAO Y, LU H, et al. Osteoarthritis Incidence Trends Globally, Regionally, and Nationally, 1990-2019: An Age‐Period‐Cohort Analysis[J]. Musculoskeletal Care, 2025, 23(1): e70045. doi:10.1002/msc.70045
doi: 10.1002/msc.70045 |
4 |
ZHANG Y, WANG X, CHEN J, et al. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis[J]. J Nanobiotechnol, 2022, 20(1): 56. doi:10.1186/s12951-022-01245-8
doi: 10.1186/s12951-022-01245-8 |
5 |
EL-SAID K S, ATTA A, MOBASHER M A, et al. Quercetin mitigates rheumatoid arthritis by inhibiting adenosine deaminase in rats[J]. Mol Med, 2022, 28(1): 24. doi:10.1186/s10020-022-00432-5
doi: 10.1186/s10020-022-00432-5 |
6 |
YEO C, AHN C R, KIM J E, et al. Chaenomeles Fructus (CF), the Fruit of Chaenomeles sinensis Alleviates IL-1β Induced Cartilage Degradation in Rat Articular Chondrocytes[J]. Int J Mol Sci, 2022, 23(8): 4360. doi:10.3390/ijms23084360
doi: 10.3390/ijms23084360 |
7 |
VINCENT T L, WANN A K T. Mechanoadaptation: articular cartilage through thick and thin[J]. J Physiol, 2019, 597(5): 1271-1281. doi:10.1113/jp275451
doi: 10.1113/jp275451 |
8 |
WEI Q, ZHANG X, ZHOU C, et al. Roles of large aggregating proteoglycans in human intervertebral disc degeneration[J]. Connect Tissue Res, 2019, 60(3): 209-218. doi:10.1080/03008207.2018.1499731
doi: 10.1080/03008207.2018.1499731 |
9 |
BROWN S B, HORNYAK J A, JUNGELS R R, et al. Characterization of Post‐Traumatic Osteoarthritis in Rats Following Anterior Cruciate Ligament Rupture by Non‐Invasive Knee Injury (NIKI)[J]. J Orthop Res, 2020, 38(2): 356-367. doi:10.1002/jor.24470
doi: 10.1002/jor.24470 |
10 |
CHANALARIS A, CLARKE H, GUIMOND S E, et al. Heparan Sulfate Proteoglycan Synthesis Is Dysregulated in Human Osteoarthritic Cartilage[J]. Am J Pathol, 2019, 189(3): 632-647. doi:10.1016/j.ajpath.2018.11.011
doi: 10.1016/j.ajpath.2018.11.011 |
11 |
LOPEZ S G, BONASSAR L J. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis, extracellular matrix assembly, and mechanical function of fibrocartilage[J]. Connect Tissue Res, 2022, 63(3): 269-286. doi:10.1080/03008207.2021.1903887
doi: 10.1080/03008207.2021.1903887 |
12 |
HAN B, LI Q, WANG C, et al. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(8): 1181-1192. doi:10.1016/j.joca.2021.03.019
doi: 10.1016/j.joca.2021.03.019 |
13 |
MELROSE L, FULLER E S, ROUGHLEY P J, et al. Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilage compared with age⁃matched macroscopically hormal and control tissues[J]. Arthritis Res Ther, 2008,10(4):R79. doi:10.1186/ar2453
doi: 10.1186/ar2453 |
14 |
SALMINEN A. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases[J]. J Mol Med (Berl), 2021, 99(1): 1-20. doi:10.1007/s00109-020-01988-7
doi: 10.1007/s00109-020-01988-7 |
15 |
MONACO G, QAWASMI F, EL HAJ A J, et al. Chondrogenic differentiation of human bone marrow MSCs in osteochondral implants under kinematic mechanical load is dependent on the underlying osteo component[J]. Front Bioeng Biotechnol, 2022, 10: 998774. doi:10.3389/fbioe.2022.998774
doi: 10.3389/fbioe.2022.998774 |
16 |
TSENG H C, WU M R, LEE C H, et al. Differentiation Capacity of Bone Marrow-Derived Rat Mesenchymal Stem Cells from DsRed and Cre Transgenic Cre/loxP Models[J]. Cells, 2022, 11(17): 2769. doi:10.3390/cells11172769
doi: 10.3390/cells11172769 |
17 |
CHEN L, WEI K, LI J, et al. Integrated Analysis of LncRNA-Mediated ceRNA Network in Calcific Aortic Valve Disease[J]. Cells, 2022, 11(14): 2204. doi:10.3390/cells11142204
doi: 10.3390/cells11142204 |
18 |
ARMIENTO A R, ALINI M, STODDART M J. Articular fibrocartilage-Why does hyaline cartilage fail to repair?[J]. Adv Drug Deliv Rev, 2019, 146: 289-305. doi:10.1016/j.addr.2018.12.015
doi: 10.1016/j.addr.2018.12.015 |
19 |
GAN K, LIAN H, YANG T, et al. Periplogenin attenuates LPS-mediated inflammatory osteolysis through the suppression of osteoclastogenesis via reducing the NF-κB and MAPK signaling pathways[J]. Cell Death Discovery, 2024, 10(1): 86. doi:10.1038/s41420-024-01856-0
doi: 10.1038/s41420-024-01856-0 |
20 |
EVERS B J, VAN DEN BOSCH M H J, BLOM A B, et al. Post-traumatic knee osteoarthritis; the role of inflammation and hemarthrosis on disease progression[J]. Front Med (Lausanne), 2022, 9: 973870. doi:10.3389/fmed.2022.973870
doi: 10.3389/fmed.2022.973870 |
21 |
AVENOSO A, D′ASCOLA A, SCURUCHI M, et al. Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects[J]. Inflamm Res, 2018, 67(1): 5-20. doi:10.1007/s00011-017-1084-9
doi: 10.1007/s00011-017-1084-9 |
22 |
SUZUKI M, TAKAHASHI N, SOBUE Y, et al. Hyaluronan suppresses enhanced cathepsin K expression via activation of NF-κB with mechanical stress loading in a human chondrocytic HCS-2/8 cells[J]. Sci Rep, 2020, 10(1): 216. doi:10.1038/s41598-019-57073-8
doi: 10.1038/s41598-019-57073-8 |
23 |
ROEDIG H, NASTASE M V, WYGRECKA M, et al. Breaking down chronic inflammatory diseases: The role of biglycan in promoting a switch between inflammation and autophagy[J]. FEBS J, 2019, 286(15): 2965-2979. doi:10.1111/febs.14791
doi: 10.1111/febs.14791 |
24 |
AVENOSO A, D’ASCOLA A, SCURUCHI M, et al. The proteoglycan biglycan mediates inflammatory response by activating TLR-4 in human chondrocytes: Inhibition by specific siRNA and high polymerized Hyaluronan[J]. Arch Biochem Biophys, 2018, 640: 75-82. doi:10.1016/j.abb.2018.01.007
doi: 10.1016/j.abb.2018.01.007 |
25 |
ZHAO F, BAI Y, XIANG X, et al. The role of fibromodulin in inflammatory responses and diseases associated with inflammation[J]. Front Immunol, 2023, 14: 1191787. doi:10.3389/fimmu.2023.1191787
doi: 10.3389/fimmu.2023.1191787 |
26 |
LAMBERT C, ZAPPIA J, SANCHEZ C, et al. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature[J]. Front Med (Lausanne), 2021, 7: 607186. doi:10.3389/fmed.2020.607186
doi: 10.3389/fmed.2020.607186 |
27 |
WANG Y, LI L, WEI Q, et al. Design, Preparation, and Bioactivity Study of New Fusion Protein HB-NC4 in the Treatment of Osteoarthritis[J]. Front Bioeng Biotechnol, 2021, 9: 700064. doi:10.3389/fbioe.2021.700064
doi: 10.3389/fbioe.2021.700064 |
28 |
AHANGAR P, MILLS S J, COWIN A J. Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair[J]. Int J Mol Sci, 2020, 21(19): 7038. doi:10.3390/ijms21197038
doi: 10.3390/ijms21197038 |
29 |
WU M, WU S, CHEN W, et al. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease[J]. Cell Res, 2024, 34(2): 101-123. doi:10.1038/s41422-023-00918-9
doi: 10.1038/s41422-023-00918-9 |
30 |
ORNITZ D M, MARIE P J. Fibroblast growth factors in skeletal development[J]. Curr Top Dev Biol, 2019, 133: 195-234. doi:10.1016/bs.ctdb.2018.11.020
doi: 10.1016/bs.ctdb.2018.11.020 |
31 |
WANG X, LU Y, WANG W, et al. Effect of different aged cartilage ECM on chondrogenesis of BMSCs in vitro and in vivo[J]. Regen Biomater, 2020, 7(6): 583-595. doi:10.1093/rb/rbaa028
doi: 10.1093/rb/rbaa028 |
32 |
ZHANG W, LIN Z, SHI F, et al. HSPG2 Mutation Association with Immune Checkpoint Inhibitor Outcome in Melanoma and Non-Small Cell Lung Cancer[J]. Cancers, 2022, 14(14): 3495. doi:10.3390/cancers14143495
doi: 10.3390/cancers14143495 |
33 |
LI L, MENG L, XU C Q, et al. Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights[J]. Open Life Sci, 2022, 17(1): 695-709. doi:10.1515/biol-2022-0075
doi: 10.1515/biol-2022-0075 |
34 |
KONG K, LI B, CHANG Y, et al. Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence[J]. Nanobiotechnol, 2025, 23(1): 34. doi:10.1186/s12951-025-03103-9
doi: 10.1186/s12951-025-03103-9 |
35 |
XIANG P, LUO Z P, CHE Y J. Insights into the mechanical microenvironment within the cartilaginous endplate: An emerging role in maintaining disc homeostasis and normal function[J]. Heliyon, 2024, 10(10): e31162. doi:10.1016/j.heliyon.2024.e31162
doi: 10.1016/j.heliyon.2024.e31162 |
36 |
CHEN J, WANG N. Tissue cell differentiation and multicellular evolution via cytoskeletal stiffening in mechanically stressed microenvironments[J]. Acta Mech Sin, 2019, 35(2): 270-274. doi:10.1007/s10409-018-0814-8
doi: 10.1007/s10409-018-0814-8 |
37 |
LEWIS W, PADILLA-MARTINEZ J P, ORTEGA-MARTINEZ A, et al. Changes in endogenous UV fluorescence and biomechanical stiffness of bovine articular cartilage after collagenase digestion are strongly correlated[J]. J Biophotonics, 2017, 10(8): 1018-1025. doi:10.1002/jbio.201600093
doi: 10.1002/jbio.201600093 |
38 |
WANG S L, LIU X L, KANG Z C, et al. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury[J]. Neural Regen Res, 2023, 18(2): 375. doi:10.4103/1673-5374.346461
doi: 10.4103/1673-5374.346461 |
39 | HUANG H, TAN Y, AYERS D C, et al. Anionic and Zwitterionic Residues Modulate Stiffness of Photo-Cross-Linked Hydrogels and Cellular Behavior of Encapsulated Chondrocytes[J]. ACS Biomater Sci Eng, 2018, 4(5):1843-1851. |
40 |
TAN S, FANG W, VANGSNESS C T, et al. Influence of Cellular Microenvironment on Human Articular Chondrocyte Cell Signaling[J]. Cartilage, 2021, 13(): 935S-946S. doi:10.1177/1947603520941219
doi: 10.1177/1947603520941219 |
41 |
FU B, SHEN J, ZOU X, et al. Matrix stiffening promotes chondrocyte senescence and the osteoarthritis development through downregulating HDAC3[J]. Bone Res, 2024, 12(1): 32. doi:10.1038/s41413-024-00333-9
doi: 10.1038/s41413-024-00333-9 |
42 |
WU D T, JEFFREYS N, DIBA M, et al. Viscoelastic biomaterials for tissue regeneration[J]. Tissue Eng Part C Methods, 2022, 28(7): 289-300. doi:10.1089/ten.tec.2022.0040
doi: 10.1089/ten.tec.2022.0040 |
43 |
RICHARDSON B M, WALKER C J, MAPLES M M, et al. Mechanobiological Interactions between Dynamic Compressive Loading and Viscoelasticity on Chondrocytes in Hydrazone Covalent Adaptable Networks for Cartilage Tissue Engineering[J]. Adv Healthcare Materials, 2021, 10(9): 2002030. doi:10.1002/adhm.202002030
doi: 10.1002/adhm.202002030 |
44 |
LIU D, ZHANG H, DONG X, et al. Effect of viscoelastic properties of cellulose nanocrystal/collagen hydrogels on chondrocyte behaviors[J]. Front Bioeng Biotechnol, 2022, 10: 959409. doi:10.3389/fbioe.2022.959409
doi: 10.3389/fbioe.2022.959409 |
45 |
AGARWAL P, LEE H P, SMERIGLIO P, et al. A dysfunctional TRPV4-GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity[J]. Nat Biomed Eng, 2021, 5(12): 1472-1484. doi:10.1038/s41551-021-00691-3
doi: 10.1038/s41551-021-00691-3 |
46 |
NÜRNBERGER S, SCHNEIDER C, KEIBL C, et al. Repopulation of decellularised articular cartilage by laser-based matrix engraving[J]. EBioMedicine, 2021, 64: 103196. doi:10.1016/j.ebiom.2020.103196
doi: 10.1016/j.ebiom.2020.103196 |
47 |
WANG Z, HAN L, SUN T, et al. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits[J]. Acta Biomater, 2020, 118: 54-68. doi:10.1016/j.actbio.2020.10.022
doi: 10.1016/j.actbio.2020.10.022 |
48 |
JIANG S, TIAN G, YANG Z, et al. Enhancement of acellular cartilage matrix scaffold by wharton′s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration[J]. Bioact Mater, 2021, 6(9): 2711-2728. doi:10.1016/j.bioactmat.2021.01.031
doi: 10.1016/j.bioactmat.2021.01.031 |
49 |
TANG Q, LIM T, SHEN L Y, et al. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application[J]. Biomaterials, 2021, 268: 120605. doi:10.1016/j.biomaterials.2020.120605
doi: 10.1016/j.biomaterials.2020.120605 |
50 |
SESSA A, ROMANDINI I, ANDRIOLO L, et al. Treatment of Juvenile Knee Osteochondritis Dissecans with a Cell-Free Biomimetic Osteochondral Scaffold: Clinical and MRI Results at Mid-Term Follow-up[J]. Cartilage, 2021, 13(): 1137S-1147S. doi:10.1177/1947603520954500
doi: 10.1177/1947603520954500 |
51 |
COLE B J, HAUNSCHILD E D, CARTER T, et al. Clinically significant outcomes following the treatment of focal cartilage defects of the knee with microfracture augmentation using cartilage allograft extracellular matrix: A multicenter prospective study[J].J Arthrosc Relat Surg, 2021, 37(5): 1512-1521. doi:10.1016/j.arthro.2021.01.043
doi: 10.1016/j.arthro.2021.01.043 |
[1] | Yuchan ZHOU,Rongchang ZHENG,Huarun LI,Jinping HUANG,Si QIN,Ting LI,Zhenyu LU,Sihui LI,Xianwen LI,Mujin LI,Ju WEN. Expression of TRM cells in the lesions of imiquimod⁃induced models of psoriasis in mice [J]. The Journal of Practical Medicine, 2025, 41(9): 1327-1331. |
[2] | Li TANG,Yurong GONG,Liye ZENG,Yanfang GAO,Chengzhe. DENG. Application value of 3.0T magnetic resonance imaging T2 mapping sequence combined with serum nesfatin⁃1 level detection in the diagnosis of elderly knee early osteoarthritis [J]. The Journal of Practical Medicine, 2025, 41(8): 1238-1242. |
[3] | Xi LI,Xiaoying REN,Yongwei JIAO,Zhipeng SUN,Shilin YIN,Zekun ZHANG,Tianci GAO,Jingxi WANG,Yongwang ZHANG,Lu LIU,Shuangqing. DU. The effect of hip⁃knee⁃ankle active and passive movement therapy on joint function in early and intermediate⁃stage knee osteoarthritis patients [J]. The Journal of Practical Medicine, 2025, 41(6): 829-837. |
[4] | Shangzeng WANG,Bei ZHANG,Zhen WANG,Shang MA,Deyang RUANGZHANG,Zhiying YIN,Yunqi ZHU,Kunpeng HU,Shao CHENG. Comparison of the effects of CR and PS prostheses in the treatment of knee osteoarthritis [J]. The Journal of Practical Medicine, 2024, 40(9): 1251-1256. |
[5] | Sibo LONG,Yan CHEN,Xintong ZHANG,Yanjun YIN,Limei YANG,Maike ZHENG,Chaohong WANG,Qing SUN,Jun YAN,Yiheng SHI,Guangli SHI,Yan ZHAO,Guirong. WANG. Serum levels of procalcitonin, interleukin⁃6 and interleukin⁃8 in patients with COVID⁃19 infection at admission and their significance in patient prognosis [J]. The Journal of Practical Medicine, 2024, 40(4): 471-475. |
[6] | Xiang JIA,Tianjie XU,Jiaxin FAN,Xiaoling GUO,Kainan LIU,Hui ZHANG,Yongsheng WANG,Qian. WANG. Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by activating the SIRT1/p53 signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(23): 3306-3316. |
[7] | Yuke SONG,Jinfan XU,Xiaoming HE,Tianye LIN,Mincong HE,Qiushi. WEI. Correlation of high signal intensity of infrapatellar fat pad on symptoms and structure of knee osteoarthritis [J]. The Journal of Practical Medicine, 2024, 40(23): 3373-3378. |
[8] | Gang DENG,Lixin ZHU,Jiasong GUO,Yizhou. XU. Research progress on the treatment of osteoarthritis with small molecules derived from traditional Chinese medicine:A review of literatures [J]. The Journal of Practical Medicine, 2024, 40(23): 3389-3393. |
[9] | Zhijie XIA,Jun LI,Qian GAO,Zhicheng LI,Zhongfang. XIA. Effect and prognosis of preauricular fistula treated by double⁃incision tunnel combined with preauricular tissue and cartilage resection [J]. The Journal of Practical Medicine, 2024, 40(22): 3179-3183. |
[10] | Binbin ZHANG,Yongrui WU,Chao LI,Kai FAN,Jingtang ZHANG. Clinical application of personalized osteotomy guide based on rapid 3D printing in knee arthroplasty [J]. The Journal of Practical Medicine, 2024, 40(17): 2448-2453. |
[11] | Xi LI,Jian ZHANG,Guohui LIU,Yunhao LIU,Zekun ZHANG,Tianci GAO,Jingxi WANG,Yongwang ZHANG,Shilin YIN,Lu LIU,Liqing QI,Shuangqing. DU. Evaluation of the curative effect of traditional Chinese medicine bone-setting technique in the treatment of knee osteoarthritis [J]. The Journal of Practical Medicine, 2024, 40(17): 2495-2502. |
[12] |
LI Liang, ZHOU Zhengxin, LI Wenhua, LIU Tao, ZHU Lei, KANG Jinping..
The study of effect of YiqiYangying Decoction used in perioperation for cases of severe knee osteoarthritis treated by artificial knee resurfacing surgery [J]. The Journal of Practical Medicine, 2023, 39(7): 904-909. |
[13] |
YAN Zhenjie, SUN Honglin, ZHAO Lingfeng, WANG Huanxin. .
Effects of injection needle scalpel,small needle scalpel and sodium hyaluronate intraarticular injectionon knee osteoarthritis:a comparative study [J]. The Journal of Practical Medicine, 2023, 39(5): 591-596. |
[14] |
LIU Junhan, GUAN Fengjun, CHENG Jin, ZHUANG Yafei, SHI Mengyue, YUAN Wenjun, LU Shuwen..
Clinical significance of memory T lymphocyte subsets in children with steroid sensitive primary nephrotic syndrome [J]. The Journal of Practical Medicine, 2023, 39(4): 436-441. |
[15] | Xingle YANG,Tingting XIA,Chunlei ZUO,Jiaxin. SHI. Value of microbiology rapid on⁃site evaluation in severe pneumonia [J]. The Journal of Practical Medicine, 2023, 39(22): 2964-2968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||