The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (15): 2187-2193.doi: 10.3969/j.issn.1006-5725.2024.15.025
• Reviews • Previous Articles Next Articles
Nan LI1,Xue ZHAO1, A′nali1,Heran LIANG1,Na. GE2()
Received:
2024-01-12
Online:
2024-08-10
Published:
2024-07-30
Contact:
Na. GE
E-mail:genanihao80@163.com
CLC Number:
Nan LI,Xue ZHAO, A′nali,Heran LIANG,Na. GE. Research progress on the role of bile acids in alcoholic liver disease[J]. The Journal of Practical Medicine, 2024, 40(15): 2187-2193.
1 |
HOSSEINI N, SHOR J, SZABO G. Alcoholic hepatitis: A review[J]. Alcohol Alcohol, 2019, 5(4):408-416. doi:10.1093/alcalc/agz036
doi: 10.1093/alcalc/agz036 |
2 |
SINGAL A K, BATALLER R, AHN J, et al. ACG clinical guideline: alcoholic liver disease[J]. Am J Gastroenterol, 2018, 113(2):175-194. doi:10.1038/ajg.2017.469
doi: 10.1038/ajg.2017.469 |
3 |
RUMGAY H, SHIELD K, CHARVAT H, et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study[J]. Lancet Oncol, 2021, 22(8):1071-1080. doi:10.1016/s1470-2045(21)00279-5
doi: 10.1016/s1470-2045(21)00279-5 |
4 |
MÉNDEZ-SÁNCHEZ N, VALENCIA-RODRIGUEZ A, VERA-BARAJAS A, et al. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer[J]. Hepatoma Res, 2020, 6:5. doi:10.20517/2394-5079.2019.29
doi: 10.20517/2394-5079.2019.29 |
5 |
HYUN J, HAN J, LEE C, et al. Pathophysiological aspects of alcohol metabolism in the liver[J]. Int J Mol Sci, 2021, 22(11):5717. doi:10.3390/ijms22115717
doi: 10.3390/ijms22115717 |
6 |
MANLEY S, DING W. Role of farnesoid X receptor and bile acids in alcoholic liver disease[J]. Acta Pharm Sin B, 2015, 5(2):158-167. doi:10.1016/j.apsb.2014.12.011
doi: 10.1016/j.apsb.2014.12.011 |
7 | 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报(医学版), 2021, 59(9):30-36. |
8 | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J/OL]. 生物技术通报, 2023,39(4):187-200. |
9 |
GE M X, SHAO R G, HE H W. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase[J]. Biochem Pharmacol, 2019, 164:152-164. doi:10.1016/j.bcp.2019.04.008
doi: 10.1016/j.bcp.2019.04.008 |
10 |
CHIANG J Y L, FERRELL J M. Bile acids as metabolicregulators and nutrient sensors[J]. Annu Rev Nutr, 2019, 39:175-200. doi:10.1146/annurev-nutr-082018-124344
doi: 10.1146/annurev-nutr-082018-124344 |
11 |
JIA W, WEI M, RAJANI C, et al. Targeting the alternative bile acid synthetic pathway for metabolic diseases[J]. Protein Cell, 2021, 12(5):411-425. doi:10.1007/s13238-020-00804-9
doi: 10.1007/s13238-020-00804-9 |
12 | DI CIAULA A, GARRUTI G, LUNARDI BACCETTO R, et al. Bile acid physiology[J]. Ann Hepatol, 2017, 16(Suppl. 1: s3-105):s4-s14. |
13 |
CHIANG J Y L, FERRELL J M. Bile acid metabolism in liver pathobiology[J]. Gene Expr, 2018, 18(2):71-87. doi:10.3727/105221618x15156018385515
doi: 10.3727/105221618x15156018385515 |
14 |
CHIANG J Y, PATHAK P, LIU H, et al. Intestinal farnesoid Xreceptor and takeda G protein couple receptor 5 signaling in metabolic regulation[J]. Dig Dis, 2017, 35(3):241-245. doi:10.1159/000450981
doi: 10.1159/000450981 |
15 |
POLAND J C, FLYNN C R. Bile acids, their receptors, and the gut microbiota[J]. Physiology (Bethesda), 2021, 36(4):235-245. doi:10.1152/physiol.00028.2020
doi: 10.1152/physiol.00028.2020 |
16 |
SPAHR L, RUBBIA-BRANDT L, GENEVAY M, et al. Early liver biopsy, intraparenchymal cholestasis, and prognosis in patients with alcoholic steatohepatitis[J]. BMC Gastroenterol, 2011, 11:115. doi:10.1186/1471-230x-11-115
doi: 10.1186/1471-230x-11-115 |
17 |
LI M, CAI S Y, BOYER J L. Mechanisms of bile acid mediated inflammation in the liver[J]. Mol Aspects Med, 2017, 56:45-53. doi:10.1016/j.mam.2017.06.001
doi: 10.1016/j.mam.2017.06.001 |
18 |
WOOLBRIGHT B L, JAESCHKE H. Novel insight into mechanisms of cholestatic liver injury[J]. World J Gastroenterol, 2012, 18(36):4985-4993. doi:10.3748/wjg.v18.i36.4985
doi: 10.3748/wjg.v18.i36.4985 |
19 |
XIE G, ZHONG W, LI H, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption[J]. FASEB J, 2013, 27(9):3583-3593. doi:10.1096/fj.13-231860
doi: 10.1096/fj.13-231860 |
20 |
ADACHI T, KAMINAGA T, YASUDA H, et al. The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury[J]. J Clin Biochem Nutr, 2014, 54(2):129-135. doi:10.3164/jcbn.13-46
doi: 10.3164/jcbn.13-46 |
21 |
YANG J S, KIM J T, JEON J, et al. Changes in hepatic gene expression upon oral administration of taurine-conjugated ursodeoxycholic acid in ob/ob mice[J]. PLoS One, 201, 5(11):e13858. doi:10.1371/journal.pone.0013858
doi: 10.1371/journal.pone.0013858 |
22 |
SCHOEMAKER M H, GOMMANS W M, CONDE DE LA ROSA L, et al. Resistance of rat hepatocytes against bile acid-induced apoptosis in cholestatic liver injury is due to nuclear factor-kappa B activation[J]. J Hepatol, 2003, 39(2):153-161. doi:10.1016/s0168-8278(03)00214-9
doi: 10.1016/s0168-8278(03)00214-9 |
23 |
LIU Y, LIU T, ZHAO X, et al. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease[J]. Cell Mol Life Sci, 2022, 79(9):486. doi:10.1007/s00018-022-04509-6
doi: 10.1007/s00018-022-04509-6 |
24 |
GONG X, ZHANG Q, RUAN Y, et al. Chronic alcohol consumption increased bile acid levels in enterohepatic circulation and reduced efficacy of irinotecan[J]. Alcohol Alcohol, 2020, 55(3):264-277. doi:10.1093/alcalc/agaa005
doi: 10.1093/alcalc/agaa005 |
25 |
KIM Y D, HWANG S L, LEE E J, et al. Melatonin ameliorates alcohol-induced bile acid synthesis by enhancing miR-497 expression[J]. J Pineal Res, 2017, 62(2). doi:10.1111/jpi.12386 .
doi: 10.1111/jpi.12386 |
26 |
KYRITSI K, WU N, ZHOU T, et al. Knockout of secretin ameliorates biliary and liver phenotypes during alcohol-induced hepatotoxicity[J]. Cell Biosci, 2023, 13(1):5. doi:10.1186/s13578-022-00945-w
doi: 10.1186/s13578-022-00945-w |
27 |
DONEPUDI A C, FERRELL J M, BOEHME S, et al. Deficiency of cholesterol 7α-hydroxylase in bile acid synthesis exacerbates alcohol-induced liver injury in mice[J]. Hepatol Commun, 2017, 2(1):99-112. doi:10.1002/hep4.1129
doi: 10.1002/hep4.1129 |
28 | 段晓延,扈金萍.胆汁酸转运体与相关疾病及药物研发进展[J].药学学报, 2022, 57(12):3576-3586. |
29 |
CHEN W, ZHANG Q, DING M, et al. Alcohol triggered bile acid disequilibrium by suppressing BSEP to sustain hepatocellular carcinoma progression[J]. Chem Biol Interact, 2022, 356:109847. doi:10.1016/j.cbi.2022.109847
doi: 10.1016/j.cbi.2022.109847 |
30 |
MATYE D J, LI Y, CHEN C, et al. Gut-restricted apical sodium-dependent bile acid transporter inhibitor attenuates alcohol-induced liver steatosis and injury in mice[J]. Alcohol Clin Exp Res, 2021, 45(6):1188-1199. doi:10.1111/acer.14619
doi: 10.1111/acer.14619 |
31 |
RIDLON J M, KANG D J, HYLEMON P B, et al. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut[J]. Dig Dis, 2015, 33(3):338-345. doi:10.1159/000371678
doi: 10.1159/000371678 |
32 |
CHIANG J Y L, FERRELL J M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3):G554-G573. doi:10.1152/ajpgi.00223.2019
doi: 10.1152/ajpgi.00223.2019 |
33 |
JIANG L, ZHANG H, XIAO D, et al. Farnesoid X receptor (FXR): structures and ligands[J]. Comput Struct Biotechnol J, 2021, 19:2148-2159. doi:10.1016/j.csbj.2022.02.029
doi: 10.1016/j.csbj.2022.02.029 |
34 |
GADALETA R M, GARCIA-IRIGOYEN O, CARIELLO M, et al. Fibroblast growth factor 19 modulates intestinal microbiota and inflammation in presence of farnesoid X receptor[J]. EBio Medicine, 2020, 54:102719. doi:10.1016/j.ebiom.2020.102719
doi: 10.1016/j.ebiom.2020.102719 |
35 | 孙悦,张文龙,李楠,等. 沙棘熊果酸对酒精性肝损伤大鼠肝FXR信号通路的影响[J]. 食品工业科技, 2023, 44(5):363-370. |
36 |
HARTMANN P, HOCHRATH K, HORVATH A, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice[J]. Hepatology, 2018, 67(6):2150-2166. doi:10.1002/hep.29676
doi: 10.1002/hep.29676 |
37 |
HUANG M, KONG B, ZHANG M, et al. Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor deficiency[J]. Lab Invest, 2020, 100(9):1158-1168. doi:10.1038/s41374-020-0439-y
doi: 10.1038/s41374-020-0439-y |
38 |
KONG B, ZHANG M, HUANG M, et al. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury[J]. Dig Liver Dis, 2019, 51(4):570-576. doi:10.1016/j.dld.2018.12.026
doi: 10.1016/j.dld.2018.12.026 |
39 |
TAKAHASHI S, TANAKA N, GOLLA S, et al. Editor's highlight: farnesoid X receptor protects against low-dose carbon tetrachloride-induced liver injury through the taurocholate-JNK pathway[J]. Toxicol Sci, 2017, 158(2):334-346. doi:10.1093/toxsci/kfx094
doi: 10.1093/toxsci/kfx094 |
40 |
ALLEN K, JAESCHKE H, COPPLE B L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis[J]. Am J Pathol, 2011, 178(1):175-186. doi:10.1016/j.ajpath.2010.11.026
doi: 10.1016/j.ajpath.2010.11.026 |
41 |
WU W B, CHEN Y Y, ZHU B, et al. Excessive bile acid activated NF-kappa B and promoted the development of alcoholic steatohepatitis in farnesoid X receptor deficient mice[J]. Biochimie, 2015, 115:86-92. doi:10.1016/j.biochi.2015.05.014
doi: 10.1016/j.biochi.2015.05.014 |
42 |
REICH M, KLINDT C, DEUTSCHMANN K, et al. Role of the G protein-coupled bile acid receptor TGR5 in liver damage[J]. Dig Dis, 2017, 35(3):235-240. doi:10.1159/000450917
doi: 10.1159/000450917 |
43 |
MERLEN G, BIDAULT-JOURDAINNE V, KAHALE N, et al. Hepatoprotective impact of the bile acid receptor TGR5[J]. Liver Int, 2020, 40(5):1005-1015. doi:10.1111/liv.14427
doi: 10.1111/liv.14427 |
44 |
FAN M, WANG Y, JIN L, et al. Bile acid-mediated activation of brown fat protects from alcohol-induced steatosis and liver injury in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3):809-826. doi:10.1016/j.jcmgh.2021.12.001
doi: 10.1016/j.jcmgh.2021.12.001 |
45 |
SPATZ M, CIOCAN D, MERLEN G, et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis[J]. JHEP Rep, 2021, 3(2):100230. doi:10.1016/j.jhepr.2021.100230
doi: 10.1016/j.jhepr.2021.100230 |
46 |
WINSTON J A, THERIOT C M. Diversification of host bile acids by members of the gut microbiota[J]. Gut Microbes, 2020, 11(2):158-171. doi:10.1080/19490976.2019.1674124
doi: 10.1080/19490976.2019.1674124 |
47 | 于爽,顾志敏,樊亚东,等. 胆汁酸免疫调节作用及其与肠道、肝脏炎症性疾病相关性的研究进展[J]. 中国免疫学杂志, 2022, 38(16):2031-2036. |
48 |
GUO X, OKPARA E S, HU W, et al. Interactive relationships between intestinal flora and bile acids[J]. Int J Mol Sci, 2022, 23(15):8343. doi:10.3390/ijms23158343
doi: 10.3390/ijms23158343 |
49 |
MERONI M, LONGO M, DONGIOVANNI P. Alcohol or gut microbiota: who is the guilty?[J]. Int J Mol Sci, 2019, 20(18):4568. doi:10.3390/ijms20184568
doi: 10.3390/ijms20184568 |
50 |
CIOCAN D, VOICAN C S, WRZOSEK L, et al. Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis[J]. Aliment Pharmacol Ther, 2018, 48(9):961-974. doi:10.1111/apt.14949
doi: 10.1111/apt.14949 |
51 |
BAJAJ J S, KAKIYAMA G, ZHAO D, et al. Continued alcohol misuse in human cirrhosis is associated with an Impaired gut-liver axis[J]. Alcohol Clin Exp Res, 2017, 41(11):1857-1865. doi:10.1111/acer.13498
doi: 10.1111/acer.13498 |
52 |
YU X, XUE M, LIU Y, et al. Effect of nicotinamide riboside on lipid metabolism and gut microflora-bile acid axis in alcohol-exposed mice[J]. Food Sci Nutr, 2020, 9(1):429-440. doi:10.1002/fsn3.2007
doi: 10.1002/fsn3.2007 |
53 |
JIANG M, LI F, LIU Y, et al. Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation[J]. Hepatology, 2023, 77(4):1164-1180. doi:10.1002/hep.32608
doi: 10.1002/hep.32608 |
54 |
DUSZKA K. Versatile Triad Alliance: bile acid, taurine and microbiota[J]. Cells, 2022, 11(15):2337. doi:10.3390/cells11152337
doi: 10.3390/cells11152337 |
55 |
LIN C J, CHIU C C, CHEN Y C, et al. Taurine attenuates hepatic inflammation in chronic alcohol-fed rats through inhibition of TLR4/MyD88 signaling[J]. J Med Food, 2015, 18(12):1291-1298. doi:10.1089/jmf.2014.3408
doi: 10.1089/jmf.2014.3408 |
56 |
IRACHETA-VELLVE A, CALENDA C D, PETRASEK J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice[J]. Hepatol Commun, 2018, 2(11):1379-1391. doi:10.1002/hep4.1256
doi: 10.1002/hep4.1256 |
57 |
WU W, ZHU B, PENG X, et al. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease[J]. Biochem Biophys Res Commun, 2014, 443(1):68-73. doi:10.1016/j.bbrc.2013.11.057
doi: 10.1016/j.bbrc.2013.11.057 |
58 | 唐曼玉,王晚晴,强敬雯,等. 益生菌与肠道菌群、免疫调节的相互作用与机制研究进展[J]. 食品工业科技, 2022, 43(16):486-493. |
59 |
GU X, LU Q, ZHANG C, et al. Clinical application and progress of fecal microbiota transplantation in liver diseases: A Review[J]. Semin Liver Dis, 2021, 41(4):495-506. doi:10.1055/s-0041-1732319
doi: 10.1055/s-0041-1732319 |
60 |
CASSARD A M, CIOCAN D. Microbiota, a key player in alcoholic liver disease[J]. Clin Mol Hepatol, 2018, 24(2):100-107. doi:10.3350/cmh.2017.0067
doi: 10.3350/cmh.2017.0067 |
61 |
CIOCAN D, SPATZ M, TRAINEL N, et al. Modulation of the bile acid enterohepatic cycle by intestinal microbiota alleviates alcohol liver disease[J]. Cells, 2022, 11(6):968. doi:10.3390/cells11060968
doi: 10.3390/cells11060968 |
62 |
CAO Y J, HUANG Z R, YOU S Z, et al. The protective effects of ganoderic acids from ganoderma lucidum fruiting body on alcoholic liver injury and intestinalmicroflora disturbance in mice with excessive alcohol intake[J]. Foods, 2022, 11(7):949. doi:10.3390/foods11070949
doi: 10.3390/foods11070949 |
63 |
LIU Y, CHEN K, LI F, et al. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice[J]. Hepatology, 2020, 71(6):2050-2066. doi:10.1002/hep.30975
doi: 10.1002/hep.30975 |
64 |
FERRERE G, WRZOSEK L, CAILLEUX F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice[J]. J Hepatol, 2017, 66(4):806-815. doi:10.1016/j.jhep.2016.11.008
doi: 10.1016/j.jhep.2016.11.008 |
[1] | Kexin XI,Yuqi ZHAO,Xiaoting XIE,Yuntao LU,Hongying FAN,Xiaoyan. HE. Research progress on the regulation of intestinal flora on glioma [J]. The Journal of Practical Medicine, 2024, 40(14): 2027-2030. |
[2] | Yanwei HUANG,Kaitai ZENG,Ziqi WEN,Yan LI,Rongping. CHEN. Markers of gut flora in Parkinson′s disease: A literature review [J]. The Journal of Practical Medicine, 2024, 40(11): 1473-1478. |
[3] | Xinwen BI,Yuanjie CUI,Qiuxian LU,Jia CUI,Fan BU,Fang HE,Hua YANG,Ming. LI. Immunomodulatory effects of intestinal flora on glucose and lipid metabolism disorders in high⁃fat diet induced obese mice [J]. The Journal of Practical Medicine, 2024, 40(11): 1505-1512. |
[4] | Ming LI,Wei SU,Shiheng. MA. Analyze of the value of bifidum in the treatment of sepsis caused by pulmonary infection based on intestinal immunity [J]. The Journal of Practical Medicine, 2023, 39(18): 2384-2388. |
[5] | Hua PAN,Minshang ZHANG,Xu WANG,Dandan. JIANG. Effect of Qi Chang Xue Xing Tang retention enema combined with heat sensitive moxibustion on gastrointestinal function and immune function of patients after radical gastrectomy [J]. The Journal of Practical Medicine, 2023, 39(16): 2130-2135. |
[6] | LEI Yu, HU Yaxin, YU Lei, CHENG Mingliang, CHENG Zhuo, CONG Shuo, PU Qian, ZHENG Lin. . Effect of intrahepatic cholestasis on bile acid spectrum and intestinal flora in ileocecum of mice [J]. The Journal of Practical Medicine, 2023, 39(10): 1232-1236. |
[7] |
NAN Ran, LI Yixuan..
Effect of Qinggan Huashi Huoxue decoction combined with silybin capsule on liver fibrosis in patients with alcoholic liver disease [J]. The Journal of Practical Medicine, 2022, 38(8): 1022-1026. |
[8] |
ZHANG Chenchen, YU Meiling, TAN Weiguo, WU Zhuhua, WEI Wenjing. .
Effects of Mycobacterium tuberculosis infection and conventional anti⁃tuberculosis chemotherapy on gut mi⁃ crobiota [J]. The Journal of Practical Medicine, 2022, 38(6): 678-684. |
[9] |
ZHOU Xiao⁃min, WANG Qiang, LI Zhuolun, YU Liping..
Research progress on intestinal flora in the diagnosis and treatment of spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(3): 276-280. |
[10] |
MAO Minghui, NIU Yue, CHEN Chun, LI Shuchun..
An analysis on the differences of gut microbiome structure between healthy Han and Tibetan population [J]. The Journal of Practical Medicine, 2022, 38(3): 281-287. |
[11] | LI Ying, LI Canwei, FAN Mengran, LIU Wei⁃ hong, GAO Pengfei. Metabolomics research progress on alcoholic liver disease [J]. The Journal of Practical Medicine, 2021, 37(7): 944-947. |
[12] |
CHEN Hui, LU Yibing.
Recent advances in the relationship between intestinal flora and diabetic glomerulosclerosis
[J]. The Journal of Practical Medicine, 2021, 37(3): 415-418.
|
[13] | SU Yao, CHEN Li, XU Xianming.. Association of characteristics of gut microbiome with gestational diabetes mellitus in pregnant women dur⁃ ing the second trimester of pregnancy [J]. The Journal of Practical Medicine, 2021, 37(20): 2636-2646. |
[14] |
GUO Shuanghui, ZHANG Yumei. .
Effect of intestinal floras on stroke prognosis via immune pathways [J]. The Journal of Practical Medicine, 2021, 37(18): 2428-2431. |
[15] |
FENG Haoyue, YUE Rensong, ZHANG Xinxia..
Relationship between intestinal flora and diabetic macroangiopathy:a literature review [J]. The Journal of Practical Medicine, 2021, 37(17): 2296-2299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||