The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (15): 2172-2176.doi: 10.3969/j.issn.1006-5725.2024.15.022
• Reviews • Previous Articles Next Articles
Zhu LI1,Yan WANG1,Wenjing ZHOU2,Haiying. WANG1()
Received:
2024-03-06
Online:
2024-08-10
Published:
2024-07-30
Contact:
Haiying. WANG
E-mail:8901@163.com;wanghaiting-8901@163.com
CLC Number:
Zhu LI,Yan WANG,Wenjing ZHOU,Haiying. WANG. Advances in the role of mitochondrial respiratory chain enzyme complexes in myocardial ischemia-reperfusion injury[J]. The Journal of Practical Medicine, 2024, 40(15): 2172-2176.
1 |
TIAN H, ZHAO X, ZHANG Y, et al. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury [J]. Biomed Pharmacother, 2023, 163:114827. doi:10.1016/j.biopha.2023.114827
doi: 10.1016/j.biopha.2023.114827 |
2 |
李招兵, 刘雨露, 黄云辉. 下调硫酸乙酰肝素酶减轻大鼠心肌缺血再灌注损伤的机制 [J]. 实用医学杂志, 2023, 39(21): 2761-2767,2774. doi:10.3969/j.issn.1006-5725.2023.21.012
doi: 10.3969/j.issn.1006-5725.2023.21.012 |
3 |
郑学斌, 沙莎, 杨慧琼, 等. Mettl14介导的m6A修饰对改善心肌梗死的分子机制 [J]. 实用医学杂志, 2023, 39(21): 2754-2760. doi:10.3969/j.issn.1006-5725.2023.21.011
doi: 10.3969/j.issn.1006-5725.2023.21.011 |
4 |
MARIN W, MARIN D, AO X, et al. Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review) [J]. Int J Mol Med, 2021, 47(2): 485-499. doi:10.3892/ijmm.2020.4823
doi: 10.3892/ijmm.2020.4823 |
5 |
CHEN C L, ZHANG L, JIN Z, et al. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury [J]. Am J Physiol Cell Physiol, 2022, 322(1): C12-C23. doi:10.1152/ajpcell.00131.2021
doi: 10.1152/ajpcell.00131.2021 |
6 | ZHAO R Z, JIANG S, ZHANG L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review) [J]. Int J Mol Med, 2019, 44(1): 3-15. |
7 |
TRUJILLO-RANGEL W A, GARCIA-VALDES L, MENDEZ-DEL VILLAR M, et al. Therapeutic Targets for Regulating Oxidative Damage Induced by Ischemia-Reperfusion Injury: A Study from a Pharmacological Perspective [J]. Oxid Med Cell Longev, 2022, 2022:8624318. doi:10.1155/2022/8624318
doi: 10.1155/2022/8624318 |
8 |
FERNANDEZ-VIZARRA E, UGALDE C. Cooperative assembly of the mitochondrial respiratory chain [J]. Trends Biochem Sci, 2022, 47(12): 999-1008. doi:10.1016/j.tibs.2022.07.005
doi: 10.1016/j.tibs.2022.07.005 |
9 |
VERCELLINO I, SAZANOV L A. The assembly, regulation and function of the mitochondrial respiratory chain [J]. Nat Rev Mol Cell Biol, 2022, 23(2): 141-61. doi:10.1038/s41580-021-00415-0
doi: 10.1038/s41580-021-00415-0 |
10 |
IVERSON T M, SINGH P K, CECCHINI G. An evolving view of complex Ⅱ-noncanonical complexes, megacomplexes, respiration, signaling, and beyond [J]. J Biol Chem, 2023, 299(6): 104761. doi:10.1016/j.jbc.2023.104761
doi: 10.1016/j.jbc.2023.104761 |
11 |
BANERJEE R, PURHONEN J, KALLIJARVI J. The mitochondrial coenzyme Q junction and complex Ⅲ: biochemistry and pathophysiology [J]. FEBS J, 2022, 289(22): 6936-6958. doi:10.1111/febs.16164
doi: 10.1111/febs.16164 |
12 |
FERNANDEZ-VIZARRA E, ZEVIANI M. Mitochondrial disorders of the OXPHOS system [J]. FEBS Lett, 2021, 595(8): 1062-1106. doi:10.1002/1873-3468.13995
doi: 10.1002/1873-3468.13995 |
13 |
DAMBROVA M, ZUURBIER C J, BORUTAITE V, et al. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury [J]. Free Radic Biol Med, 2021, 165:24-37. doi:10.1016/j.freeradbiomed.2021.01.036
doi: 10.1016/j.freeradbiomed.2021.01.036 |
14 |
WANG Z, BIAN W, YAN Y, et al. Functional Regulation of K(ATP) Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases [J]. Front Pharmacol, 2022, 13:868401. doi:10.3389/fphar.2022.868401
doi: 10.3389/fphar.2022.868401 |
15 |
ROUSLIN W. Mitochondrial complexes Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ in myocardial ischemia and autolysis [J]. Am J Physiol, 1983, 244(6): H743-H748. doi:10.1152/ajpheart.1983.244.6.h743
doi: 10.1152/ajpheart.1983.244.6.h743 |
16 |
GALEMOU YOGA E, SCHILLER J, ZICKERMANN V. Ubiquinone Binding and Reduction by Complex Ⅰ-Open Questions and Mechanistic Implications [J]. Front Chem, 2021, 9:672851. doi:10.3389/fchem.2021.672851
doi: 10.3389/fchem.2021.672851 |
17 |
OKOYE C N, KOREN S A, WOJTOVICH A P. Mitochondrial complex I ROS production and redox signaling in hypoxia [J]. Redox Biol, 2023, 67:102926. doi:10.1016/j.redox.2023.102926
doi: 10.1016/j.redox.2023.102926 |
18 |
LESNEFSKY E J, CHEN Q, TANDLER B, et al. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies [J]. Annu Rev Pharmacol Toxicol, 2017, 57:535-565. doi:10.1146/annurev-pharmtox-010715-103335
doi: 10.1146/annurev-pharmtox-010715-103335 |
19 |
JIANG L, YIN X, CHEN Y H, et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I [J]. Theranostics, 2021, 11(4): 1703-1720. doi:10.7150/thno.43895
doi: 10.7150/thno.43895 |
20 |
LENNICKE C, COCHEME H M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function [J]. Mol Cell, 2021, 81(18): 3691-3707. doi:10.1016/j.molcel.2021.08.018
doi: 10.1016/j.molcel.2021.08.018 |
21 |
JIANG Z, SHEN T, HUYNH H, et al. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells [J]. Genes (Basel), 2022, 13(10):1889. doi:10.3390/genes13101889
doi: 10.3390/genes13101889 |
22 |
DU X, ZENG Q, LUO Y, et al. Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction [J]. Mitochondrion, 2024, 75:101846. doi:10.1016/j.mito.2024.101846
doi: 10.1016/j.mito.2024.101846 |
23 |
ABE K, HAYASHI N, TERADA H. Effect of endogenous nitric oxide on energy metabolism of rat heart mitochondria during ischemia and reperfusion [J]. Free Radic Biol Med, 1999, 26(3/4): 379-387. doi:10.1016/s0891-5849(98)00222-6
doi: 10.1016/s0891-5849(98)00222-6 |
24 |
BAE J, SALAMON R J, BRANDT E B, et al. Malonate Promotes Adult Cardiomyocyte Proliferation and Heart Regeneration [J]. Circulation, 2021, 143(20): 1973-1986. doi:10.1161/circulationaha.120.049952
doi: 10.1161/circulationaha.120.049952 |
25 |
WOJTOVICH A P, BROOKES P S. The complex Ⅱ inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels [J]. Basic Res Cardiol, 2009, 104(2): 121-129. doi:10.1007/s00395-009-0001-y
doi: 10.1007/s00395-009-0001-y |
26 |
VEITCH K, HOMBROECKX A, CAUCHETEUX D, et al. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage [J]. Biochem J, 1992, 281(Pt 3): 709-715. doi:10.1042/bj2810709
doi: 10.1042/bj2810709 |
27 |
BLEIER L, DROSE S. Superoxide generation by complex Ⅲ: from mechanistic rationales to functional consequences [J]. Biochim Biophys Acta, 2013, 1827(11/12): 1320-1331. doi:10.1016/j.bbabio.2012.12.002
doi: 10.1016/j.bbabio.2012.12.002 |
28 |
COVIAN R, TRUMPOWER B L. Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex [J]. J Biol Chem, 2006, 281(41): 30925-30932. doi:10.1074/jbc.m604694200
doi: 10.1074/jbc.m604694200 |
29 |
LOTZ C, ZHANG J, FANG C, et al. Isoflurane protects the myocardium against ischemic injury via the preservation of mitochondrial respiration and its supramolecular organization [J]. Anesth Analg, 2015, 120(2): 265-274. doi:10.1213/ane.0000000000000494
doi: 10.1213/ane.0000000000000494 |
30 |
STEWART S, LESNEFSKY E J, CHEN Q. Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury [J]. Transl Res, 2009, 153(5): 224-231. doi:10.1016/j.trsl.2009.02.003
doi: 10.1016/j.trsl.2009.02.003 |
31 |
RUGOLO M, ZANNA C, GHELLI A M. Organization of the Respiratory Supercomplexes in Cells with Defective Complex Ⅲ: Structural Features and Metabolic Consequences [J]. Life (Basel), 2021, 11(4):351. doi:10.3390/life11040351
doi: 10.3390/life11040351 |
32 |
LEE H L, CHEN C L, YEH S T, et al. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion [J]. Am J Physiol Heart Circ Physiol, 2012, 302(7): H1410-H1422. doi:10.1152/ajpheart.00731.2011
doi: 10.1152/ajpheart.00731.2011 |
33 |
PETROSILLO G, RUGGIERO F M, DI VENOSA N, et al. Decreased complex Ⅲ activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin [J]. FASEB J, 2003, 17(6): 714-716. doi:10.1096/fj.02-0729fje
doi: 10.1096/fj.02-0729fje |
34 |
PAPA S, GUERRIERI F, CAPITANIO N. A possible role of slips in cytochrome C oxidase in the antioxygen defense system of the cell [J]. Biosci Rep, 1997, 17(1): 23-31. doi:10.1023/a:1027331116866
doi: 10.1023/a:1027331116866 |
35 |
LESNEFSKY E J, CHEN Q, SLABE T J, et al. Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin [J]. Am J Physiol Heart Circ Physiol, 2004, 287(1): H258-H267. doi:10.1152/ajpheart.00348.2003
doi: 10.1152/ajpheart.00348.2003 |
36 |
LESNEFSKY E J, SLABE T J, STOLL M S, et al. Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria [J]. Am J Physiol Heart Circ Physiol, 2001, 280(6): H2770-H2778. doi:10.1152/ajpheart.2001.280.6.h2770
doi: 10.1152/ajpheart.2001.280.6.h2770 |
37 |
SCHIFFER T A, PELELI M, SUNDQVIST M L, et al. Control of human energy expenditure by cytochrome c oxidase subunit Ⅳ-2 [J]. Am J Physiol Cell Physiol, 2016, 311(3): C452-C461. doi:10.1152/ajpcell.00099.2016
doi: 10.1152/ajpcell.00099.2016 |
38 |
KADENBACH B. Complex Ⅳ- The regulatory center of mitochondrial oxidative phosphorylation [J]. Mitochondrion, 2021, 58:296-302. doi:10.1016/j.mito.2020.10.004
doi: 10.1016/j.mito.2020.10.004 |
39 |
YU Q, NGUYEN T, OGBI M, et al. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: exacerbation of COI subunit loss by PKC-epsilon inhibition [J]. Am J Physiol Heart Circ Physiol, 2008, 294(6): H2637-H2645. doi:10.1152/ajpheart.91476.2007
doi: 10.1152/ajpheart.91476.2007 |
40 |
SOLAINI G, HARRIS D A. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion [J]. Biochem J, 2005, 390(Pt 2): 377-394. doi:10.1042/bj20042006
doi: 10.1042/bj20042006 |
41 |
BONORA M, GIORGI C, PINTON P. Molecular mechanisms and consequences of mitochondrial permeability transition [J]. Nat Rev Mol Cell Biol, 2022, 23(4): 266-285. doi:10.1038/s41580-021-00433-y
doi: 10.1038/s41580-021-00433-y |
42 |
BONORA M, BONONI A, DE MARCHI E, et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition [J]. Cell Cycle, 2013, 12(4): 674-683. doi:10.4161/cc.23599
doi: 10.4161/cc.23599 |
43 |
HURST S, GONNOT F, DIA M, et al. Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion [J]. Cell Death Dis, 2020, 11(8): 661. doi:10.1038/s41419-020-02864-5
doi: 10.1038/s41419-020-02864-5 |
[1] | YAN Peng, DENG Yuqiong, HUANG Xinglan, HUANG Caifeng, ZHAO Xiaoqing, LIU Sheng, CHENG Xiping, LIU Xiaodong. . Effects of dexamethasone on the reactive oxygen species and MT⁃CO1 in lung tissues of asthma mice [J]. The Journal of Practical Medicine, 2022, 38(6): 731-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||