1 |
王天杰, 董军乐, 王妍, 等. 急性ST段抬高型心肌梗死合并慢性闭塞病变的近远期预后分析[J]. 中华心血管病杂志, 2021, 49(6): 580-585.
|
2 |
张师儒, 李瑞雪, 焦云娣, 等. 梗死面积对急性ST段抬高型心肌梗死患者预后的预测价值[J]. 中华内科杂志, 2021, 60(8): 751-756.
|
3 |
邱依聆, 陈乐, 江燕萍. 重金属暴露影响DNA甲基化并导致先天性心脏病发生的研究进展[J]. 实用医学杂志, 2021, 37(5): 692-695.
|
4 |
WU S, ZHANG S, WU X, et al. m6A RNA methylation in cardiovascular diseases[J]. Mol Ther, 2020, 28(10): 2111-2119.
|
5 |
PARAMASIVAM A, VIJAYASHREE PRIYADHARSINI J, RAGHUNANDHAKUMAR S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases[J]. Hypertens Res, 2020, 43(2): 153-154.
|
6 |
MENG L, LIN H, HUANG X, et al. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA[J]. Cell Death Dis, 2022, 13(1): 38.
|
7 |
MARUYAMA K, NAEMURA K, YOSHIHARA K, et al. Surgical protocol for permanent ligation of the left anterior descending coronary artery in mice to generate a model of myocardial infarction[J]. STAR Protoc, 2021, 2(3): 100775.
|
8 |
LI S, CHEN J, LIU M, et al. Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury[J]. Basic Res Cardiol, 2021, 116(1): 65.
|
9 |
CROOKS D R, MAIO N, LANG M, et al. Mitochondrial DNA alterations underlie an irreversible shift to aerobic glycolysis in fumarate hydratase-deficient renal cancer[J]. Sci Signal, 2021, 14(664): eabc4436.
|
10 |
韩娟娟, 张新安, 艾福录. m6A RNA甲基化修饰异常在肿瘤中的作用[J]. 中国生物化学与分子生物学报, 2020, 36(4): 383-391.
|
11 |
WANG X, FENG J, XUE Y, et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016, 534(7608): 575-578.
|
12 |
ZHANG B, JIANG H, DONG Z, et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases[J]. Genes Dis, 2021, 8(6): 746-758.
|
13 |
ZHANG R, QU Y, JI Z, et al. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner[J]. Cell Mol Biol Lett, 2022, 27(1): 55.
|
14 |
ZHAO K, YANG C, ZHANG J, et al. METTL14improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner[J]. Cell Death Discov, 2021, 7(1): 291.
|
15 |
LI T, ZHUANG Y, YANG W, et al. Silencing ofMETTL14attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts[J]. FASEB J, 2021, 35(2): e21162.
|
16 |
CHEN J, NING Y, ZHANG H, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate[J]. Life Sci, 2019, 239: 117034.
|
17 |
JIAN D, WANG Y, JIAN L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications[J]. Theranostics, 2020, 10(20): 8939-8956.
|
18 |
PANG P, QU Z, YU S, et al. Mettl14 attenuates cardiac ischemia/reperfusion injury by regulating wnt1/β-catenin signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 762853.
|
19 |
AGHAJANI NARGESI A, ZHU X Y, ZHANG L, et al. Renovascular Hypertension Induces Myocardial Mitochondrial Damage, Contributing to Cardiac Injury and Dysfunction in Pigs With Metabolic Syndrome[J]. Am J Hypertens, 2019, 34(2): 172-182.
|
20 |
ZHANG Y, WANG Y, XU J, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways[J]. J Pineal Res, 2019, 66(2): e12542.
|
21 |
DU L, LI Y, KANG M, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization[J]. Cancer Res, 2021, 81(14): 3822-3834.
|
22 |
CAI X, LIANG C, ZHANG M, et al. N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies[J]. Cancer Lett, 2022, 544: 215815.
|