The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (6): 921-928.doi: 10.3969/j.issn.1006-5725.2025.06.023
• Reviews • Previous Articles
Gaokai HU,Ya'nan NIU,Yukang GONG,Yang HU,Ruixuan XU,Wenshan. GAO()
Received:
2024-12-12
Online:
2025-03-25
Published:
2025-03-31
Contact:
Wenshan. GAO
E-mail:hbdxfsyygws@163.com
CLC Number:
Gaokai HU,Ya'nan NIU,Yukang GONG,Yang HU,Ruixuan XU,Wenshan. GAO. Research progress on the application of deep learning in lumbar spine disease[J]. The Journal of Practical Medicine, 2025, 41(6): 921-928.
1 |
MAZUROWSKI M A, BUDA M, SAHA A, et al. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI[J]. J Magn Reson Imaging,2019,49(4):939-954. doi:10.1002/jmri.26534
doi: 10.1002/jmri.26534 |
2 |
HUANG J, SHEN H, WU J, et al. Spine Explorer: A deep learning based fully automated program for efficient and reliable quantifications of the vertebrae and discs on sagittal lumbar spine MR images[J]. Spine J,2020, 20 (4): 590-599. doi:10.1016/j.spinee.2019.11.010
doi: 10.1016/j.spinee.2019.11.010 |
3 | 冯鹏程,曹圣伟,覃兵,等. 基于深度学习的人体腰椎MRI图像自动分割[J]. 生命科学仪器,2023,21(5):53-57. |
4 | 李新彤,姚宁,闫东,等. 基于V-Net卷积神经网络深度学习模型自动分割腰椎CT图像中的椎旁肌[J]. 中国医学影像技术,2023,39(6):890-894. |
5 |
LIAWRUNGRUEANG W, KIM P, KOTHEERANURAK V, et al. Automatic Detection, Classification, and Grading of Lumbar Intervertebral Disc Degeneration Using an Artificial Neural Network Model[J]. Diagnostics (Basel),2023,13(4):663. doi:10.3390/diagnostics13040663
doi: 10.3390/diagnostics13040663 |
6 |
POJSKIC M, BISSON E, OERTEL J, et al. Lumbar disc herniation: Epidemiology, clinical and radiologic diagnosis WFNS spine committee recommendations[J]. World Neurosurg X,2024,22:100279. doi:10.1016/j.wnsx.2024.100279
doi: 10.1016/j.wnsx.2024.100279 |
7 |
PRISILLA A A, GUO Y L, JAN Y K, et al. An approach to the diagnosis of lumbar disc herniation using deep learning models[J]. Front Bioeng Biotechnol,2023,11:1247112. doi:10.3389/fbioe.2023.1247112
doi: 10.3389/fbioe.2023.1247112 |
8 | 韦祎,赵经纬,印宏坤,等. 基于Unet的深度学习模型在腰椎间盘突出诊断中的应用研究[J]. 中国数字医学,2023,18(12):58-63. |
9 |
PAN Q, ZHANG K, HE L, et al. Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional Neural Networks: Method Development Study[J]. JMIR Med Inform, 2021,9(5):e14755. doi:10.2196/14755
doi: 10.2196/14755 |
10 |
SUSTERSIC T, RANKOVIC V, MILOVANOVIC V, et al. A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images[J]. IEEE J Biomed Health Inform,2022,26(12):6036-6046. doi:10.1109/jbhi.2022.3209585
doi: 10.1109/jbhi.2022.3209585 |
11 |
ZHANG W, CHEN Z, SU Z,et al. Deep learning‐based detection and classification of lumbar disc herniation on magnetic resonance images[J]. JOR Spine, 2023, 6(3) : e1276. doi:10.1002/jsp2.1276
doi: 10.1002/jsp2.1276 |
12 |
HALLINAN J T P D, ZHU L, YANG K, et al. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI[J]. Radiology,2021,300(1):130-138. doi:10.1148/radiol.2021204289
doi: 10.1148/radiol.2021204289 |
13 |
ZHANG T, ZHU C, ZHAO Y, et al. Deep learning model to classify and monitor idiopathic scoliosis in adolescents using a single smartphone photograph[J]. JAMA Network Open, 2023, 6(8): e2330617. doi:10.1001/jamanetworkopen.2023.30617
doi: 10.1001/jamanetworkopen.2023.30617 |
14 |
ZHANG B, YU K, NING Z, et al. Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective cohort study[J]. Bone, 2020,140:115561. doi:10.1016/j.bone.2020.115561
doi: 10.1016/j.bone.2020.115561 |
15 |
XU F, XIONG Y, YE G, et al. Deep learning-based artificial intelligence model for classification of vertebral compression fractures: A multicenter diagnostic study[J]. Front Endocrinol (Lausanne), 2023,14:1025749. doi:10.3389/fendo.2023.1025749
doi: 10.3389/fendo.2023.1025749 |
16 |
SHI W, XU T, YANG H, et al. Attention Gate Based Dual-Pathway Network for Vertebra Segmentation of X-Ray Spine Images[J]. IEEE J Biomed Health Inform,2022,26(8):3976-3987. doi:10.1109/jbhi.2022.3158968
doi: 10.1109/jbhi.2022.3158968 |
17 | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报(医学版),2023,61(3):1-6. |
18 |
MORBÉE L, CHEN M, HERREGODS N, et al. MRI-based synthetic CT of the lumbar spine: Geometric measurements for surgery planning in comparison with CT[J]. Eur J Radiol,2021,144:109999. doi:10.1016/j.ejrad.2021.109999
doi: 10.1016/j.ejrad.2021.109999 |
19 |
LEWANDROWSKI K U, MURALEEDHARAN N, EDDY S A, et al. Reliability analysis of deep learning algorithms for reporting of routine lumbar MRI scans[J]. Int J Spine Surg, 2020, 14(s3): S98-S107. doi:10.14444/7131
doi: 10.14444/7131 |
20 |
MAO R Q, LAN L, KAY J, et al. Immersive Virtual Reality for Surgical Training: A Systematic Review[J]. J Surg Res,2021,268:40-58. doi:10.1016/j.jss.2021.06.045
doi: 10.1016/j.jss.2021.06.045 |
21 |
BHANDARI M, ZEFFIRO T, REDDIBOINA M,et al. Artificial intelligence and robotic surgery: Current perspective and future directions[J]. Curr Opin Urol,2020,30(1):48-54. doi:10.1097/mou.0000000000000692
doi: 10.1097/mou.0000000000000692 |
22 |
YANG X, WANG L, YANG Q, et al. Neurological Safety of Endoscopic Transforaminal Lumbar Interbody Fusion: A Magnetic Resonance Neurography Study[J]. Spine (Phila Pa 1976),2023,48(5):344-349. doi:10.1097/brs.0000000000004496
doi: 10.1097/brs.0000000000004496 |
23 |
LI T, WU G, DONG Y, et al. Kambin's triangle-related data based on magnetic resonance neurography and its role in percutaneous transforaminal endoscopic lumbar interbody fusion[J]. J Orthop Surg Res,2022,17(1):543. doi:10.1186/s13018-022-03428-3
doi: 10.1186/s13018-022-03428-3 |
24 |
LIPPROSS S, JÜNEMANN K P, OSMONOV D, et al. Robot assisted spinal surgery- A technical report on the use of DaVinci in orthopaedics[J]. J Orthop,2019,19:50-53. doi:10.1016/j.jor.2019.11.045
doi: 10.1016/j.jor.2019.11.045 |
25 |
ZHANG Q, HAN X G, XU Y F, et al. Robot-Assisted Versus Fluoroscopy-Guided Pedicle Screw Placement in Transforaminal Lumbar Interbody Fusion for Lumbar Degenerative Disease[J]. World Neurosurg,2019,125:e429-e434. doi:10.1016/j.wneu.2019.01.097
doi: 10.1016/j.wneu.2019.01.097 |
26 |
MATUR AV, PALMISCIANO P, DUAH H O, et al. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: A systematic review and meta-analysis[J]. Spine J, 2023,23(2):197-208. doi:10.1016/j.spinee.2022.10.006
doi: 10.1016/j.spinee.2022.10.006 |
27 |
ABEL F, AVRUMOVA F, GOLDMAN S N, et al. Robotic-navigated assistance in spine surgery[J]. Bone Joint J,2023,105-B(5):543-550. doi:10.1302/0301-620x.105b5.bjj-2022-0810.r3
doi: 10.1302/0301-620x.105b5.bjj-2022-0810.r3 |
28 |
LI Y, CHEN L, LIU Y, et al. Accuracy and safety of robot-assisted cortical bone trajectory screw placement: A comparison of robot-assisted technique with fluoroscopy-assisted approach[J]. BMC Musculoskelet Disord,2022,23(1):328. doi:10.1186/s12891-022-05206-y
doi: 10.1186/s12891-022-05206-y |
29 |
LEE N J, BUCHANAN I A, ZUCKERMANN S L, et al. What Is the Comparison in Robot Time per Screw, Radiation Exposure, Robot Abandonment, Screw Accuracy, and Clinical Outcomes Between Percutaneous and Open Robot-Assisted Short Lumbar Fusion?: A Multicenter, Propensity-Matched Analysis of 310 Patients[J]. Spine (Phila Pa 1976),2022,47(1):42-48. doi:10.1097/brs.0000000000004132
doi: 10.1097/brs.0000000000004132 |
30 |
SIEMIONOW K B, KATCHKO K M, LEWICKI P, et al. Augmented reality and artificial intelligence-assisted surgical navigation: Technique and cadaveric feasibility study[J]. J Craniovertebr Junction Spine,2020, 11(2):81-85. doi:10.4103/jcvjs.jcvjs_48_20
doi: 10.4103/jcvjs.jcvjs_48_20 |
31 |
GHAEDNIA H, FOURMAN M S, LANS A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials[J]. Spine J, 2021, 21(10): 1617-1625. doi:10.1016/j.spinee.2021.03.018
doi: 10.1016/j.spinee.2021.03.018 |
32 |
JO Y Y, JANG J H, KWON J, et al. Predicting intraoperative hypotension using deep learning with waveforms of arterial blood pressure, electroencephalogram, and electrocardiogram: Retrospective study[J]. PLoS one, 2022, 17(8): e0272055. doi:10.1371/journal.pone.0272055
doi: 10.1371/journal.pone.0272055 |
33 |
RUSHTON A, HENEGHAN N R, HEYMANS M W, et al. Clinical course of pain and disability following primary lumbar discectomy: Systematic review and meta-analysis[J]. Eur Spine J, 2020,29(7):1660-1670. doi:10.1007/s00586-019-06272-y
doi: 10.1007/s00586-019-06272-y |
34 |
HOPKINS B S, MAZMUDAR A, DRISCOLL C, et al. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions[J]. Clin Neurol Neurosurg, 2020,192:105718. doi:10.1016/j.clineuro.2020.105718
doi: 10.1016/j.clineuro.2020.105718 |
35 |
ITO S, NAKASHIMA H, YOSHII T, et al. Deep learning-based prediction model for postoperative complications of cervical posterior longitudinal ligament ossification[J]. Eur Spine J, 2023,32(11):3797-3806. doi:10.1007/s00586-023-07562-2
doi: 10.1007/s00586-023-07562-2 |
36 |
BERG B, GOROSITO M A, FJELD O, et al. Machine Learning Models for Predicting Disability and Pain Following Lumbar Disc Herniation Surgery[J]. JAMA Netw Open, 2024,7(2):e2355024. doi:10.1001/jamanetworkopen.2023.55024
doi: 10.1001/jamanetworkopen.2023.55024 |
37 |
CHEN Y, LIN F, WANG K, et al. Development of a predictive model for 1-year postoperative recovery in patients with lumbar disk herniation based on deep learning and machine learning[J]. Front Neurol, 2024, 15: 1255780. doi:10.3389/fneur.2024.1255780
doi: 10.3389/fneur.2024.1255780 |
38 |
KHOR S, LAVALLEE D, CIZIK A, et al. Development and validation of a prediction model for pain and functional outcomes after lumbar spine surgery[J]. JAMA Surg,2018,153(12):e183804. doi:10.1001/jamasurg.2018.0072
doi: 10.1001/jamasurg.2018.0072 |
39 |
CINNERA A M, MORONE G, IOSA M, et al. Artificial neural network analysis of factors affecting functional independence recovery in patients with lumbar stenosis after neurosurgery treatment: An observational cohort study[J]. J Orthop, 2024, 55: 38-43. doi:10.1016/j.jor.2024.04.003
doi: 10.1016/j.jor.2024.04.003 |
40 |
HORNUNG A L, BARAJAS J N, RUDISILL S S, et al. Prediction of lumbar disc herniation resorption in symptomatic patients: A prospective, multi-imaging and clinical phenotype study[J]. Spine J,2023,23(2):247-260. doi:10.1016/j.spinee.2022.10.003
doi: 10.1016/j.spinee.2022.10.003 |
41 |
HOPKINS B S, MAZMUDAR A, DRISCOLL C, et al. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions[J]. Clin Neurol Neurosurg,2020,192:105718. doi:10.1016/j.clineuro.2020.105718
doi: 10.1016/j.clineuro.2020.105718 |
42 |
RYU S M, SEO S W, LEE S H,et al. Novel prognostication of patients with spinal and pelvic chondrosarcoma using deep survival neural networks[J]. BMC Med Inform Decis Mak,2020,20(1):3. doi:10.1186/s12911-019-1008-4
doi: 10.1186/s12911-019-1008-4 |
43 | KIM J K, WANG M X, CHANG M C,et al. Deep Learning Algorithm Trained on Lumbar Magnetic Resonance Imaging to Predict Outcomes of Transforaminal Epidural Steroid Injection for Chronic Lumbosacral Radicular Pain[J]. Pain Physician,2022,25(8):587-592. |
44 |
JUJJAVARAPU C, SURI P, PEJAVER V, et al. Predicting decompression surgery by applying multimodal deep learning to patients' structured and unstructured health data[J]. BMC Med Inform Decis Mak,2023,23(1):2. doi:10.1186/s12911-022-02096-x
doi: 10.1186/s12911-022-02096-x |
45 |
MCDONNELL J M, EVANS S R, MCCARTHY L, et al. The diagnostic and prognostic value of artificial intelligence and artificial neural networks in spinal surgery: A narrative review[J]. Bone Joint J, 2021, 103(9): 1442-1448. doi:10.1302/0301-620x.103b9.bjj-2021-0192.r1
doi: 10.1302/0301-620x.103b9.bjj-2021-0192.r1 |
46 |
Azad T D, Vattipally V N, Ames C P. Personalizing adult spinal deformity surgery through multimodal artificial intelligence[J].Acta Orthopaedica Traumatologica Turcica, 2024, 58(2):80-82. doi:10.5152/j.aott.2024.23215
doi: 10.5152/j.aott.2024.23215 |
[1] | Xi HU,Yan LI,Yang. LIU. Recent advances on the application of deep learning in assisted reproductive technology [J]. The Journal of Practical Medicine, 2024, 40(7): 893-897. |
[2] | Wenjie HAN,Youtian ZHOU,Zhensheng LI,Jianjie KANG,Bingmei. DENG. Risk factors of depression and anxiety in epilepsy patients and their relationship with quality of life [J]. The Journal of Practical Medicine, 2024, 40(4): 460-465. |
[3] | Jia XIANG,Qiantong CHEN,Yingxin LU,Sijie ZHENG,Junjie HUANG,Yingying CHEN,Suidan HUANG,Huai. CHEN. Study on diffuse cystic lung disease based on deep learning [J]. The Journal of Practical Medicine, 2024, 40(19): 2747-2754. |
[4] | Xinyu LI,Yang WU,Hongmei ZHANG,Lixue YIN,Bo PENG,Shenghua. XIE. Deep learning technology for quality control of echocardiography images [J]. The Journal of Practical Medicine, 2024, 40(1): 108-113. |
[5] | Runcai GUO,Lei WANG,Zhenguo HUANG,Linfeng XI,Shuai ZHANG,Min. LIU. Deep learning convolutional neural network model trained from scratch algorithm in the evaluation of acute pulmonary thromboembolism [J]. The Journal of Practical Medicine, 2023, 39(22): 2979-2983. |
[6] | ZHU Xiaofei, QIAN Shining, CAO Huiling, WU ling. . Study on the value of blood cell parameters in the diagnosis of breast cancer based on OPLS⁃DA and artifi⁃ cial neural network algorithm [J]. The Journal of Practical Medicine, 2022, 38(18): 2266-2271. |
[7] | LUO Gang, PAN Si⁃lin, QIAO Sibo, PANG Shanchen, CHEN Taotao, SUN Lingyu, DONG Yukun.. Deep learning technology for automatic recognition of fetal echocardiography images [J]. The Journal of Practical Medicine, 2022, 38(14): 1830-1833. |
[8] | CHE Siyu, JIANG Yining, HAN Guangq⁃ ing, ZHAO Wenjing, LI Guosheng, LI Zhiyong.. A neural network model based on CT image used to differentiate minimally invasive adenocarcinoma and invasive adenocarcinoma presenting as pure ground⁃glass nodules [J]. The Journal of Practical Medicine, 2020, 36(23): 3273-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||