The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (19): 2991-2999.doi: 10.3969/j.issn.1006-5725.2025.19.006
• Basic Research • Previous Articles
Jinyan GUO1,Yuqing YOU2,Ke CHEN2,Fen PAN1,Jiahui LAI2,Sufang CHEN1,Weifeng. YAO1()
Received:
2025-07-14
Online:
2025-10-10
Published:
2025-10-10
Contact:
Weifeng. YAO
E-mail:yaowf3@mail.sysu.edu.cn
CLC Number:
Jinyan GUO,Yuqing YOU,Ke CHEN,Fen PAN,Jiahui LAI,Sufang CHEN,Weifeng. YAO. Protective mechanism of sevoflurane on acute lung injury in sepsis by regulating the Wnt/β-catenin signaling pathway[J]. The Journal of Practical Medicine, 2025, 41(19): 2991-2999.
Tab.1
Primer Sequences for β-Catenin, c-Myc, Cyclin D1, GSK-3β mRNA"
基因名称 | 基因长度/bp | 上游序列 | 下游序列 | 基因符号 |
---|---|---|---|---|
β?catenin | 150 | ATGGAACCAGACAGAAAAGC | CTAGTCATTGCAATTTTGC | Ctnnb1 |
c?Myc | 120 | GGCTCCTGGCAAAAGGTCA | CTGCGTAGTTGTGCTGATGT | Myc |
Cyclin D1 | 180 | GCTGCGAAGTGGAAACCATC | CCTCCTTCTGCACACATTTGAA | Ccnd1 |
GSK?3β | 150 | TTGGAGCCACTGATTACACG | CCAACTGATCCACACCACTG | Gsk3b |
GAPDH | 100 | GAAGGTGAAGGTCGGAGTCA | CATGGGTGGAATCATATTGGAA | GAPDH |
Tab.2
Comparison of pathological damage and apoptosis in lung tissue of mice in each group"
组别 | 例数 | 肺组织评分/分 | 每视野细胞凋亡 | 肺湿/干比 |
---|---|---|---|---|
Sham组 | 10 | 1.90 ± 0.74 | 32.80 ± 6.36 | 2.79 ± 0.47 |
CLP组 | 10 | 9.50 ± 1.84?? | 264.29 ± 39.04? | 6.62 ± 0.85 |
SEV组 | 10 | 7.30 ± 0.95ΔΔ | 214.61 ± 36.21ΔΔΔ | 5.18 ± 0.92Δ |
SEV + XAV组 | 10 | 10.10 ± 2.42### | 265.72 ± 35.61# | 6.87 ± 0.84## |
F值 | 52.13 | 117.42 | 56.13 | |
P值 | < 0.001 | < 0.001 | < 0.001 |
Tab.3
Comparison of SOD activity, MDA content, and ROS level in lung tissue of mice among groups"
组别 | 例数 | SOD/(U/mgprot) | MDA/(mmol/mgprot) | ROS/(AU/mgprot) |
---|---|---|---|---|
Sham组 | 10 | 213.59 ± 20.72 | 0.64 ± 0.16 | 94.85 ± 26.80 |
CLP组 | 10 | 80.63 ± 25.08? | 2.92 ± 0.50? | 423.23 ± 77.83? |
SEV组 | 10 | 109.12 ± 28.05Δ | 2.22 ± 0.54Δ | 290.67 ± 82.34ΔΔ |
SEV + XAV组 | 10 | 72.19 ± 17.16## | 3.19 ± 0.52# | 453.03 ± 75.53## |
F值 | 79.2 | 62.5 | 55.3 | |
P值 | < 0.001 | < 0.001 | < 0.001 |
Tab.4
Comparison of IL-1β, TNF-α, and IL-6 levels in lung tissues among different groups of mice"
组别 | 例数 | IL?1β/(pg/mL) | TNF?α/(pg/mL) | IL?6/(pg/mL) |
---|---|---|---|---|
Sham组 | 10 | 22.38 ± 10.08 | 27.84 ± 13.6 | 129.21 ± 72.60 |
CLP组 | 10 | 144.45 ± 25.24? | 146.80 ± 23.78? | 953.68 ± 199.98? |
SEV组 | 10 | 112.88 ± 20.24Δ | 111.27 ± 18.00Δ | 700.13 ± 149.31ΔΔ |
SEV + XAV组 | 10 | 147.55 ± 26.04## | 142.70 ± 23.76## | 973.18 ± 201.09### |
F值 | 74.84 | 74.38 | 57.31 | |
P值 | < 0.001 | < 0.001 | < 0.001 |
Tab.5
Comparison of β-catenin, c-Myc, Cyclin D1 and GSK-3β mRNA expression levels in lung tissue of mice among groups x ± s"
组别 | 例数 | β-catenin mRNA | c-Myc mRNA | Cyclin D1 mRNA | GSK-3β mRNA |
---|---|---|---|---|---|
Sham组 | 10 | 1.83 ± 0.44 | 1.75 ± 0.52 | 1.23 ± 0.40 | 0.79 ± 0.18 |
CLP组 | 10 | 1.14 ± 0.28?? | 0.84 ± 0.40?? | 0.61 ± 0.32?? | 1.25 ± 0.38? |
SEV组 | 10 | 1.59 ± 0.42Δ | 1.44 ± 0.58Δ | 0.83 ± 0.53Δ | 0.74 ± 0.20ΔΔ |
SEV + XAV组 | 10 | 0.98 ± 0.30# | 0.68 ± 0.22# | 0.54 ± 0.29# | 0.99 ± 0.32# |
F值 | 11.92 | 7.25 | 3.39 | 7.00 | |
P值 | < 0.001 | < 0.001 | <0.05 | <0.001 |
Tab.6
Comparison of β-catenin, c-Myc, Cyclin D1 and p-GSK-3β protein expression levels in lung tissue of mice among groups x ± s"
组别 | 例数 | β-catenin | c-Myc | Cyclin D1 | p-GSK-3β |
---|---|---|---|---|---|
Sham组 | 10 | 2.09 ± 0.44 | 1.61 ± 0.25 | 2.00 ± 0.39 | 1.08 ± 0.32 |
CLP组 | 10 | 1.73 ± 0.48?? | 0.96 ± 0.35?? | 1.38 ± 0.27? | 0.59 ± 0.21?? |
SEV组 | 10 | 2.08 ± 0.45Δ | 1.49 ± 0.32ΔΔ | 1.60 ± 0.53Δ | 1.20 ± 0.36Δ |
SEV + XAV组 | 10 | 1.50 ± 0.32## | 0.77 ± 0.36# | 1.02 ± 0.30# | 0.71 ± 0.29# |
F值 | 11.49 | 7.25 | 3.39 | 7.00 | |
P值 | < 0.001 | < 0.001 | < 0.05 | < 0.001 |
Tab.7
Comparison of β-catenin and SP-C fluorescent expression in lung tissue of mice among groups"
组别 | 例数 | β-catenin 荧光强度 | SP-C 荧光强度 |
---|---|---|---|
Sham组 | 10 | 567.93 ± 69.33 | 437.87 ± 72.47 |
CLP组 | 10 | 247.64 ± 70.28** | 156.42 ± 89.44* |
SEV组 | 10 | 379.98 ± 82.62Δ | 281.44 ± 63.52ΔΔ |
SEV + XAV组 | 10 | 211.48 ± 59.36## | 135.28 ± 77.51# |
F值 | 51.78 | 33.29 | |
P值 | < 0.001 | < 0.001 |
[1] |
YANG R, YANG H, WEI J, et al. Mechanisms Underlying the Effects of Lianhua Qingwen on Sepsis-Induced Acute Lung Injury: A Network Pharmacology Approach[J]. Frontiers in Pharmacology, 2021, 12: 717652. doi:10.3389/fphar.2021.717652
doi: 10.3389/fphar.2021.717652 |
[2] |
LIU Y, ZHANG Y, FENG Q, et al. GPA Peptide Attenuates Sepsis-Induced Acute Lung Injury in Mice via Inhibiting Oxidative Stress and Pyroptosis of Alveolar Macrophage[J]. Oxid Med Cell Longev, 2021, 2021:5589472. doi:10.1155/2021/5589472
doi: 10.1155/2021/5589472 |
[3] |
ZHOU B, ZHANG J, CHEN Y, et al. Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling[J]. Aging (Albany NY), 2022, 14(8):3617-3632.. doi:10.18632/aging.204033
doi: 10.18632/aging.204033 |
[4] |
XIONG C, HUANG X, CHEN S, et al. Role of Extracellular microRNAs in Sepsis-Induced Acute Lung Injury[J]. J Immunol Res, 2023, 2023:5509652. doi:10.1155/2023/5509652
doi: 10.1155/2023/5509652 |
[5] |
TAJASUWAN L, KETTAWAN A, RUNGRUANG T, et al. Inhibitory Effect of Dietary Defatted Rice Bran in an AOM/DSS-Induced Colitis-Associated Colorectal Cancer Experimental Animal Model[J]. Foods, 2022, 11(21):3488. doi:10.3390/foods11213488
doi: 10.3390/foods11213488 |
[6] |
SHEN S, WANG P, WU P, et al. CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury[J]. Mol Ther, 2024, 32(11):3974-3989. doi:10.1016/j.ymthe.2024.09.008
doi: 10.1016/j.ymthe.2024.09.008 |
[7] |
ZHANG Y, ZHA T, SONG G, et al. Unveiling the protective role of sevoflurane in video-assisted thoracoscopic surgery associated-acute lung injury: Inhibition of ferroptosis[J]. Pulm Pharmacol Ther, 2024, 86:102312. doi:10.1016/j.pupt.2024.102312
doi: 10.1016/j.pupt.2024.102312 |
[8] |
DING X, GAO X, REN A, et al. Sevoflurane enhances autophagy via Rac1 to attenuate lung ischaemia‒reperfusion injury[J]. Chem Biol Interact, 2024, 397:111078. doi:10.1016/j.cbi.2024.111078
doi: 10.1016/j.cbi.2024.111078 |
[9] |
OKUNO T, KOUTSOGIANNAKI S, HOU L, et al. Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Toll-like receptor 4 system[J]. FASEB J, 2019, 33(12):14528-14541. doi:10.1096/fj.201901570r
doi: 10.1096/fj.201901570r |
[10] |
GONG Y, KANG P, WANG J, et al. Neuroprotective potential of sevoflurane against isoflurane induced cognitive dysfunction in rats via anti-inflammatory and antioxidant effect[J]. Acta Cir Bras, 2023, 38:e385523. doi:10.1590/acb385523
doi: 10.1590/acb385523 |
[11] |
王慧, 龚园其, 周仪华, 等. 青藤碱调控Nrf2/Keap1信号通路对脓毒症急性肺损伤的改善作用[J]. 实用医学杂志, 2022,38(15): 1896-1900. doi:10.3969/j.issn.1006-5725.2022.15.009
doi: 10.3969/j.issn.1006-5725.2022.15.009 |
[12] |
ZHANG E, ZHAO X, MA H, et al. A subanesthetic dose of sevoflurane combined with oxygen exerts bactericidal effects and prevents lung injury through the nitric oxide pathway during sepsis[J]. Biomed Pharmacother, 2020, 127:110169. doi:10.1016/j.biopha.2020.110169
doi: 10.1016/j.biopha.2020.110169 |
[13] |
SHEN Y, HE Y, PAN Y, et al. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury[J]. Front Pharmacol, 2024, 15:1415145. doi:10.3389/fphar.2024.1415145
doi: 10.3389/fphar.2024.1415145 |
[14] |
AN J, PARK SH, KO IG, et al. Polydeoxyribonucleotide Ameliorates Lipopolysaccharide-Induced Lung Injury by Inhibiting Apoptotic Cell Death in Rats[J]. Int J Mol Sci, 2017, 18(9):1847. doi:10.3390/ijms18091847
doi: 10.3390/ijms18091847 |
[15] |
XU Y, XIN J, SUN Y, et al. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment[J]. Pharmaceuticals (Basel), 2024, 17(4):472. doi:10.3390/ph17040472
doi: 10.3390/ph17040472 |
[16] |
WANG B, GU A, YAN J, et al. Kaempferol alleviates sepsis related acute lung injury by inhibiting the activation of alveolar macrophages mediated by extracellular vesicles from alveolar epithelial cells[J]. Int Immunopharmacol, 2025,162:115130.. doi:10.1016/j.intimp.2025.115130
doi: 10.1016/j.intimp.2025.115130 |
[17] |
ROMAGNOLI S, CHELAZZI C, VILLA G, et al. The New MIRUS System for Short-Term Sedation in Postsurgical ICU Patients[J]. Crit Care Med, 2017, 45(9):e925-e931. doi:10.1097/ccm.0000000000002465
doi: 10.1097/ccm.0000000000002465 |
[18] |
SCHLÄPFER M, PIEGELER T, DULL RO, et al. Propofol increases morbidity and mortality in a rat model of sepsis[J]. Crit Care, 2015, 19(1):45. doi:10.1186/s13054-015-0751-x
doi: 10.1186/s13054-015-0751-x |
[19] |
LUNGU O, TOSCANI D, GIULIANI N. Mechanistic insights into bone destruction in multiple myeloma: Cellular and molecular perspectives[J]. J Bone Oncol, 2025, 51:100668. doi:10.1016/j.jbo.2025.100668
doi: 10.1016/j.jbo.2025.100668 |
[20] |
BAUMHOER D, BERTHOLD R, ISFORT I, et al. Recurrent CTNNB1 mutations in craniofacial osteomas[J]. Mod Pathol, 2022, 35(4):489-494. doi:10.1038/s41379-021-00956-x
doi: 10.1038/s41379-021-00956-x |
[21] |
GHATAK S, HASCALL V C, KARAMANOS N, et al. Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance[J]. Front Oncol, 2022, 12:906260. doi:10.3389/fonc.2022.906260
doi: 10.3389/fonc.2022.906260 |
[22] |
MBOGO I, KAWANO C, NAKAMURA R, et al. A transphyletic study of metazoan β-catenin protein complexes[J]. Zoological Lett, 2024, 10(1):20. doi:10.1186/s40851-024-00243-y
doi: 10.1186/s40851-024-00243-y |
[23] |
QIU Z, WANG X, YANG Z, et al. GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/β-catenin signalling pathway[J]. Cell Death Dis, 2022, 13(5):508. doi:10.1038/s41419-022-04968-6
doi: 10.1038/s41419-022-04968-6 |
[24] |
ZHU J, ZHENG Z, YIN Z, et al. MiR-146b overexpression promotes bladder cancer cell growth via the SMAD4/C-MYC/Cyclin D1 axis[J]. Front Oncol, 2025, 15:1565638. doi:10.3389/fonc.2025.1565638
doi: 10.3389/fonc.2025.1565638 |
[25] |
SHIROLE N H, KESAR D, LEE Y, et al. Requirement for Cyclin D1 Underlies Cell-Autonomous HIF2 Dependence in Kidney Cancer[J]. Cancer Discov, 2025, 15(7):1484-1504. doi:10.1158/2159-8290.cd-24-1378
doi: 10.1158/2159-8290.cd-24-1378 |
[26] | 杨汉立, 刘春志, 史明, 等. 基于Wnt/β-catenin信号通路调控神经元损伤探讨脊髓伤方对脊髓型颈椎病的效应机制[J]. 实用医学杂志, 2025,41(10): 1487-1495. |
[27] |
WANG H, ZHONG Y, LI N, et al. Transcriptomic analysis and validation reveal the pathogenesis and a novel biomarker of acute exacerbation of chronic obstructive pulmonary disease[J]. Respir Res, 2022, 23(1):27. doi:10.1186/s12931-022-01950-w
doi: 10.1186/s12931-022-01950-w |
[28] |
WANG S, LI X, MA Q, et al. Glutamine Metabolism Is Required for Alveolar Regeneration during Lung Injury[J]. Biomolecules, 2022, 12(5):728. doi:10.3390/biom12050728
doi: 10.3390/biom12050728 |
[29] |
JENSEN-CODY C W, CROOKE A K, ROTTI P G, et al. Lef-1 controls cell cycle progression in airway basal cells to regulate proliferation and differentiation[J]. Stem Cells, 2021, 39(9):1221-1235. doi:10.1002/stem.3386
doi: 10.1002/stem.3386 |
[30] |
ZHANG L, FAN M, NAPOLITANO F, et al. Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites[J]. J Transl Med, 2021, 19(1):31. doi:10.1186/s12967-020-02696-z
doi: 10.1186/s12967-020-02696-z |
[31] |
ZHOU H, MEHTA S, SRIVASTAVA SP, et al. Endothelial cell-glucocorticoid receptor interactions and regulation of Wnt signaling[J]. JCI Insight, 2020, 5(3):e131384. doi:10.1172/jci.insight.131384
doi: 10.1172/jci.insight.131384 |
[32] |
LIU G, JIA G, REN Y, et al. Mechanism of lncRNA gadd7 regulating mitofusin 1 expression by recruiting LSD1 to down-regulate H3K9me3 level, and mediating mitophagy in alveolar type Ⅱ epithelial cell apoptosis in hyperoxia-induced acute lung injury[J]. Cell Biol Toxicol, 2025, 41(1):77. doi:10.1007/s10565-025-10021-x
doi: 10.1007/s10565-025-10021-x |
[1] | Jinshan YANG,Benzhong JIA,Siwen ZHONG,Tao LI,Dengbao. LI. Effect of lactobacillus plantarum LB12 on renal calcium oxalate stones in rats [J]. The Journal of Practical Medicine, 2025, 41(8): 1130-1138. |
[2] | Zhizhou XIAO,Ying HUANG,Huawei. BIAN. To investigate the effect of aloperine on bone metabolism in osteoporotic mice based on autophagy and apoptosis mediated by Wnt/β⁃catenin signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(4): 500-508. |
[3] | Lu ZHENG,Haohao ZHANG,Feifei WU,Jiaqi GUO,Youqin WANG,Ruimin HAO,Lihui FENG,Yan. LI. Protective effect of exenatide on oxidative stress in hypothalamus of diabetes mice and its mechanism [J]. The Journal of Practical Medicine, 2025, 41(3): 330-338. |
[4] | Xingwei WU,Jianying WANG,Chengxiao GUO,Ziyi LIU,Chao SUN,Fei. YU. The effect of remimazolam on modulating the ROS/RAGE/NF-κB signaling pathway in LPS-induced microglial inflammation [J]. The Journal of Practical Medicine, 2025, 41(2): 153-161. |
[5] | Peijing DU,Enxi HU,Xiang TAO,Jia CAO,Libin WANG. Super⁃enhancer⁃mediated GSE1 activation drives breast cancer proliferation through Wnt/β⁃catenin signaling [J]. The Journal of Practical Medicine, 2025, 41(18): 2796-2805. |
[6] | Wenli YANG,Tong BAO,Xin LIN,Ruge NIU,Zhongchi XU,Yunhe ZHAO. Prevention and treatment of acute radiation⁃induced myocardial injury by the preparation of Abelmoschus manihot (L.) Medik (Jiahua Tablet) [J]. The Journal of Practical Medicine, 2025, 41(17): 2631-2636. |
[7] | Yuejing ZHAO,Zelin CHEN,Wu ZHANG. Effect of closed negative pressure drainage combined with Ilizarov transverse tibial bone displacement on the clinical efficacy and complications of severe diabetic foot [J]. The Journal of Practical Medicine, 2025, 41(13): 2052-2057. |
[8] | Junpeng LIU,Shiya LIU,Zhen ZHANG,Changhong MIAO,Xihua. LU. Effects of remimazolam and sevoflurane anesthesia on intracranial pressure and cerebral oxygenation in patients undergoinglaparoscopicsurgery in trendelenburg position [J]. The Journal of Practical Medicine, 2025, 41(13): 2088-2093. |
[9] | Hanli YANG,Chunzhi LIU,Ming SHI,Minggao HU,Xianzhong BU,Yuanming ZHONG,Wei. XU. Mechanism of Jisuishang Formula in cervical spondylotic myelopathy: Regulation of neuronal injury via the Wnt/β⁃catenin signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(10): 1487-1495. |
[10] | Lihong WU,Yan GUO,Jing CAO,Xiaoyan DU,Qingqing LIANG,Xiaocheng GAO,Yanru WANG,Yang DENG,Long GAO. Mechanism of neodymium oxide exposure causing brain tissue damage in mouse [J]. The Journal of Practical Medicine, 2025, 41(1): 30-34. |
[11] | Wanxia WANG,Hong MA,Jin CHEN,Kang CHENG,Meiyu. LIU. Effect of different doses of esketamine combined with sevoflurane anesthesia in pediatric day foreskin surgery [J]. The Journal of Practical Medicine, 2024, 40(8): 1078-1082. |
[12] | Kanglin CAI,Jinkai ZHANG,Liangdi RAN,Dajun HU,Zhitao FENG,Huilian. HUANG. Research progress on antidepressant pharmacological effects and mechanisms of Bupleuri Radix⁃Paeoniae Radix Alba herb⁃pair [J]. The Journal of Practical Medicine, 2024, 40(4): 447-452. |
[13] | Jinhui XU,Mailong YUAN,Tao ZHOU,Mingsheng ZHANG,Yaqi. LI. Effects of sevoflurane or propofol anesthesia maintenance on renal function and postoperative cognition in patients undergoing liver transplantation [J]. The Journal of Practical Medicine, 2024, 40(24): 3509-3514. |
[14] | Peng SUN,Zhaojin JIA,Xiuhua LI,Xiaowei CHEN,Runsheng WEI,Yantao JIN,Jiantao. JIN. The effects of different extracorporeal circulation temperature combined with dexmedetomidine on oxidative stress in patients undergoing cardiac surgery under cardiopulmonary bypass [J]. The Journal of Practical Medicine, 2024, 40(24): 3521-3526. |
[15] | Yan JIANG,Xiaoqin WANG,Hong MEI,Xinxin LIU,Zhenliang LIAO,Kun YU,Banghai FENG,Song QIN. Type Ⅱ alveolar epithelial cell⁃derived exosomal miR⁃21⁃5p targeting SKP2 alleviate bronchopulmonary dysplasia [J]. The Journal of Practical Medicine, 2024, 40(23): 3298-3305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||