The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (16): 2604-2610.doi: 10.3969/j.issn.1006-5725.2025.16.024
• Reviews • Previous Articles
Die XIAO,Jun MA,Ling QI,Zhaoxie YU,Ya'nan. LI()
Received:
2025-04-17
Online:
2025-08-25
Published:
2025-08-28
Contact:
Ya'nan. LI
E-mail:yananli2023@hbucm.edu.cn
CLC Number:
Die XIAO,Jun MA,Ling QI,Zhaoxie YU,Ya'nan. LI. Meningeal lymphatic vessles promote α-syn efflux in Parkinson's disease[J]. The Journal of Practical Medicine, 2025, 41(16): 2604-2610.
[1] |
GROTEWOLD N, ALBIN R L. Update: Descriptive epidemiology of parkinson disease[J]. Parkinsonism Relat Disord, 2024, 120: 106000. doi:10.1016/j.parkreldis.2024.106000
doi: 10.1016/j.parkreldis.2024.106000 |
[2] |
ZHU Z, CORDATO D, CHEN R, et al. Plasma alpha-synuclein predicts cognitive impairment in parkinson's disease: A systematic review and meta-analysis[J]. J Neurol, 2025, 272(2): 124. doi:10.1007/s00415-024-12871-7
doi: 10.1007/s00415-024-12871-7 |
[3] |
ZUO Y, DING X, LIU Z, et al. Diverse pathways for the treatment of Parkinson’s disease: Integration and development of traditional and emerging therapies[J]. Neuroscience, 2025, 568: 388-398. doi:10.1016/j.neuroscience.2025.01.045
doi: 10.1016/j.neuroscience.2025.01.045 |
[4] | 卢硕,肖怡,葛丽特,等. 阿尔茨海默病中β-淀粉样蛋白异常沉积机制的研究进展[J]. 中华神经医学杂志,2023,22(6):627-630. |
[5] |
MESQUITA S DA, PAPADOPOULOS Z, DYKSTRA T, et al. Meningeal lymphatics affect microglia responses and anti-aβ immunotherapy[J]. Nat, 2021, 593(7858): 255-260. doi:10.1038/s41586-021-03489-0
doi: 10.1038/s41586-021-03489-0 |
[6] |
YANG F, WANG Z, SHI W, et al. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy[J]. Light Sci Appl, 2024, 13(1):96. doi:10.1038/s41377-024-01450-0
doi: 10.1038/s41377-024-01450-0 |
[7] |
ZHANG Q, NIU Y, LI Y, et al. Meningeal lymphatic drainage: Novel insights into central nervous system disease[J]. Signal Transduction Targeted Ther, 2025, 10(1): 142. doi:10.1038/s41392-025-02177-z
doi: 10.1038/s41392-025-02177-z |
[8] |
SMYTH L C D, KIPNIS J. Redefining CNS immune privilege[J]. Nat Rev Immunol, 2025. doi: 10.1038/s41577-025-01175-0 . Online ahead of print.
doi: 10.1038/s41577-025-01175-0 |
[9] |
ABSINTA M, HA S K, NAIR G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI[J]. eLife, 2017, 6: e29738. doi:10.7554/elife.29738
doi: 10.7554/elife.29738 |
[10] |
ASPELUND A, ANTILA S, PROULX S T, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7): 991-999. doi:10.1084/jem.20142290
doi: 10.1084/jem.20142290 |
[11] |
YOON J H, JIN H, KIM H J, et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage[J]. Nat, 2024, 625(7996): 768-777. doi:10.1038/s41586-023-06899-4
doi: 10.1038/s41586-023-06899-4 |
[12] |
OLIVER G, KIPNIS J, RANDOLPH G J, et al. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease[J]. Cell, 2020, 182(2): 270-296. doi:10.1016/j.cell.2020.06.039
doi: 10.1016/j.cell.2020.06.039 |
[13] |
MESQUITA S DA, FU Z, KIPNIS J. The meningeal lymphatic system: A new player in neurophysiology[J]. Neuron, 2018, 100(2): 375-388. doi:10.1016/j.neuron.2018.09.022
doi: 10.1016/j.neuron.2018.09.022 |
[14] |
DUCOLI L, DETMAR M. Beyond PROX1: Transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function[J]. Developmental Cell, 2021, 56(4): 406-426. doi:10.1016/j.devcel.2021.01.018
doi: 10.1016/j.devcel.2021.01.018 |
[15] |
MONTENEGRO-NAVARRO N, GARCÍA-BÁEZ C, GARCÍA-CABALLERO M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology[J]. Nat Commun, 2023, 14(1): 8389. doi:10.1038/s41467-023-44133-x
doi: 10.1038/s41467-023-44133-x |
[16] |
SOLARI E, MARCOZZI C, NEGRINI D, et al. Lymphatic vessels and their surroundings: How local physical factors affect lymph flow[J]. Biology, 2020, 9(12): 463. doi:10.3390/biology9120463
doi: 10.3390/biology9120463 |
[17] |
KEUTERS M H, ANTILA S, IMMONEN R, et al. The impact of VEGF-C-induced dural lymphatic vessel growth on ischemic stroke pathology[J]. Transl Stroke Res, 2025, 16(3): 781-799. doi:10.1007/s12975-024-01262-9
doi: 10.1007/s12975-024-01262-9 |
[18] |
ZHOU L, LI Y, DE LEON M J. PET imaging of neurofluids[J]. Neuroimaging Clin N Am, 2025, 35(2): 223-238. doi:10.1016/j.nic.2024.12.001
doi: 10.1016/j.nic.2024.12.001 |
[19] |
CARARE R O, BERNARDES‐SILVA M, NEWMAN T A, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology[J]. Neuropathol Appl Neurobiol, 2008, 34(2): 131-144. doi:10.1111/j.1365-2990.2007.00926.x
doi: 10.1111/j.1365-2990.2007.00926.x |
[20] |
AGARWAL N, CARARE R O. Cerebral Vessels: An Overview of Anatomy, Physiology, and Role in the Drainage of Fluids and Solutes[J]. Front Neurol, 2021, 11: 611485. doi:10.3389/fneur.2020.611485
doi: 10.3389/fneur.2020.611485 |
[21] |
POLLAY M. The function and structure of the cerebrospinal fluid outflow system[J]. Fluids Barriers CNS, 2010, 7(1): 9. doi:10.1186/1743-8454-7-9
doi: 10.1186/1743-8454-7-9 |
[22] |
ZHU B, HENDRICKS J, MORTON J E, et al. Near-infrared fluorescence tomography and imaging of ventricular cerebrospinal fluid flow and extracranial outflow in non-human primates[J]. IEEE Trans Med Imaging, 2023, 42(12): 3555-3565. doi:10.1109/tmi.2023.3295247
doi: 10.1109/tmi.2023.3295247 |
[23] |
SHIN J, KIM S. Bundle structures inside the deep cervical lymphatic vessels of mice[J]. Sci Rep, 2024, 14(1): 28449. doi:10.1038/s41598-024-80155-1
doi: 10.1038/s41598-024-80155-1 |
[24] |
ILIFF J J, WANG M, LIAO Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147):147ra111. doi:10.1126/scitranslmed.3003748
doi: 10.1126/scitranslmed.3003748 |
[25] |
RASMUSSEN M K, MESTRE H, NEDERGAARD M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2): 1025-1151. doi:10.1152/physrev.00031.2020
doi: 10.1152/physrev.00031.2020 |
[26] |
YAĞMURLU K, SOKOLOWSKI J D, ÇIRAK M, et al. Anatomical features of the deep cervical lymphatic system and intrajugular lymphatic vessels in humans[J]. Brain Sci, 2020, 10(12): 953. doi:10.3390/brainsci10120953
doi: 10.3390/brainsci10120953 |
[27] | 陆熠繁,叶民.脑淋巴系统在帕金森病中的研究进展[J].临床神经病学杂志,2023,36 (3):228-231. |
[28] |
GOUVEIA-FREITAS K, BASTOS-LEITE A J. Perivascular spaces and brain waste clearance systems: Relevance for neurodegenerative and cerebrovascular pathology[J]. Neuroradiology, 2021, 63(10): 1581-1597. doi:10.1007/s00234-021-02718-7
doi: 10.1007/s00234-021-02718-7 |
[29] |
RAPER D, LOUVEAU A, KIPNIS J. How do meningeal lymphatic vessels drain the CNS? [J].Trends Neurosci, 2016, 39(9): 581-586. doi:10.1016/j.tins.2016.07.001
doi: 10.1016/j.tins.2016.07.001 |
[30] |
LI X, QI L, YANG D, et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system[J]. Nat Neurosci, 2022, 25(5): 577-587. doi:10.1038/s41593-022-01063-z
doi: 10.1038/s41593-022-01063-z |
[31] |
MESQUITA S DA, LOUVEAU A, VACCARI A, et al. Functional aspects of meningeal lymphatics in ageing and alzheimer’s disease[J]. Nature, 2018, 560(7717): 185-191. doi:10.1038/s41586-018-0368-8
doi: 10.1038/s41586-018-0368-8 |
[32] | 庄镇裕,叶梓良,林楚曼,等 .α-突触核蛋白转运与帕金森病关系的研究进展[J].实用医学杂志,2018,34(23):4008-4010. |
[33] |
PATEL T K, HABIMANA-GRIFFIN L, GAO X, et al. Dural lymphatics regulate clearance of extracellular tau from the CNS[J]. Mol Neurodegener, 2019, 14(1): 11. doi:10.1186/s13024-019-0312-x
doi: 10.1186/s13024-019-0312-x |
[34] |
ZOU W, PU T, FENG W, et al. Blocking meningeal lymphatic drainage aggravates parkinson's disease-like pathology in mice overexpressing mutated α-synuclein[J]. Transl Neurodegener, 2019, 8(1): 7. doi:10.1186/s40035-019-0147-y
doi: 10.1186/s40035-019-0147-y |
[35] |
NAM D, LEE J Y, LEE M, et al. Detection and assessment of α-synuclein oligomers in the urine of parkinson's disease patients[J]. J Parkinsons Dis, 2020, 10(3): 981-991. doi:10.3233/jpd-201983
doi: 10.3233/jpd-201983 |
[36] |
ELHADI S ABD, GRIGOLETTO J, POLI M, et al. α‐synuclein in blood cells differentiates parkinson's disease from healthy controls[J]. Ann Clin Transl Neurol, 2019, 6(12): 2426-2436. doi:10.1002/acn3.50944
doi: 10.1002/acn3.50944 |
[37] |
WU Y, ZHANG T, LI X, et al. Borneol-driven meningeal lymphatic drainage clears amyloid-β peptide to attenuate alzheimer-like phenotype in mice[J]. Theranostics, 2023, 13(1): 106-124. doi:10.7150/thno.76133
doi: 10.7150/thno.76133 |
[38] |
DING X B, WANG X X, XIA D H, et al. Impaired meningeal lymphatic drainage in patients with idiopathic parkinson's disease[J]. Nat Med, 2021, 27(3): 411-418. doi:10.1038/s41591-020-01198-1
doi: 10.1038/s41591-020-01198-1 |
[39] |
NEVES S P DAS, DELIVANOGLOU N, MESQUITA S DA. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges[J]. Front Pharmacol, 2021, 12: 655052. doi:10.3389/fphar.2021.655052
doi: 10.3389/fphar.2021.655052 |
[40] |
AL-DIWANI A, PROVINE N M, MURCHISON A, et al. Neurodegenerative fluid biomarkers are enriched in human cervical lymph nodes[J].Brain,2025,148(2):394-400. doi:10.1093/brain/awae329
doi: 10.1093/brain/awae329 |
[41] | PAGANO G, TAYLOR K I, ANZURES-CABRERA J, et al. Trial of Prasinezumab in Early-Stage Parkinson's Disease[J]. N Engl J Med, 2022, 387(5): 421-432. |
[42] |
KUCHIMANCHI M, MONINE M, KANDADI MURALIDHARAN K, et al. Phase II dose selection for alpha synuclein–targeting antibody cinpanemab (BIIB054) based on target protein binding levels in the brain[J]. CPT Pharmacometrics Syst Pharmacol, 2020, 9(9): 515-522. doi:10.1002/psp4.12538
doi: 10.1002/psp4.12538 |
[43] |
TERSTAPPEN G C, MEYER A H, BELL R D, et al. Strategies for delivering therapeutics across the blood–brain barrier[J]. Nat Rev Drug Discovery, 2021, 20(5): 362383. doi:10.1038/s41573-021-00139-y
doi: 10.1038/s41573-021-00139-y |
[44] |
RAMOS-ZALDÍVAR H, POLAKOVICOVA I, SALAS-HUENULEO E, et al. The cervical and meningeal lymphatic network as a pathway for retrograde nanoparticle transport to the brain[J]. Int J Nanomed, 2024, 19: 10725-10743. doi:10.2147/ijn.s477159
doi: 10.2147/ijn.s477159 |
[45] |
LIU J, GAO D, HU D, et al. Delivery of biomimetic liposomes via meningeal lymphatic vessels route for targeted therapy of parkinson's disease[J]. Research, 2023, 6: 30. doi:10.34133/research.0030
doi: 10.34133/research.0030 |
[46] |
WANG M, YAN C, LI X, et al. Non-invasive modulation of meningeal lymphatics ameliorates ageing and alzheimer's disease-associated pathology and cognition in mice[J]. Nat Commun, 2024, 15(1): 1453. doi:10.1038/s41467-024-45656-7
doi: 10.1038/s41467-024-45656-7 |
[47] |
DU T, RAGHUNANDAN A, MESTRE H, et al. Restoration of cervical lymphatic vessel function in aging rescues cerebrospinal fluid drainage[J]. Nat Aging, 2024, 4(10): 1418-1431. doi:10.1038/s43587-024-00691-3
doi: 10.1038/s43587-024-00691-3 |
[48] |
CHONG P L H, GARIC D, SHEN M D, et al. Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review[J]. Sleep Med Rev, 2022, 61: 101572. doi:10.1016/j.smrv.2021.101572
doi: 10.1016/j.smrv.2021.101572 |
[49] |
SCHÜTZ L, SIXEL-DÖRING F, HERMANN W. Management of Sleep Disturbances in Parkinson's Disease[J]. J Parkinsons Dis, 2022, 12(7): 2029-2058. doi:10.3233/jpd-212749
doi: 10.3233/jpd-212749 |
[50] |
LI Y, ZHANG J, WAN J, et al. Melatonin regulates aβ production/clearance balance and aβ neurotoxicity: A potential therapeutic molecule for alzheimer's disease[J]. Biomed Pharmacother, 2020, 132: 110887. doi:10.1016/j.biopha.2020.110887
doi: 10.1016/j.biopha.2020.110887 |
[51] |
XIONG W, LI J, ZHANG E, et al. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals[J]. Biochem Biophys Res Commun, 2016, 473(4): 1019-1025. doi:10.1016/j.bbrc.2016.04.009
doi: 10.1016/j.bbrc.2016.04.009 |
[52] |
LIN C H, YAMAMOTO T. Supermicrosurgical lymphovenous anastomosis[J]. J Chin Med Assoc, 2024,87(5):455-462. doi:10.1097/jcma.0000000000001088
doi: 10.1097/jcma.0000000000001088 |
[53] |
FANG R, JIN L, LU H, et al. A novel microsurgical model of cervical lymph node-to-vein anastomosis (LNVA) for studying brain lymphatic outflow[J]. J Craniofac Surg, 2025.doi: 10.1097/SCS.0000000000011535 . Online ahead of print.
doi: 10.1097/SCS.0000000000011535 |
[54] |
MA Y N, WANG Z, TANG W. Deep cervical lymphaticovenous anastomosis in alzheimer's disease: A promising frontier or premature enthusiasm?[J]. BST, 2025, 19(2): 144-149. doi:10.5582/bst.2025.01108
doi: 10.5582/bst.2025.01108 |
[55] |
FANG R, JIN L, LU H, et al. A novel microsurgical rat model of cervical lymph node–to–vein anastomosis (LNVA) for studying brain lymphatic outflow[J]. Animal Behavior and Cognition, 2025. doi: 10.1097/SCS.0000000000011535 . Online ahead of print.
doi: 10.1097/SCS.0000000000011535 |
[56] |
胡梦妮,张小蕾,荣臻,等 .电针对MPTP诱导帕金森病小鼠FoXO1/NLRP3通路介导神经炎症的影响[J].实用医学杂志,2024,40(11):1494-1499. doi:10.3969/j.issn.1006-5725.2024.11.005
doi: 10.3969/j.issn.1006-5725.2024.11.005 |
[57] |
LIU Z, HUANG Y, WANG X, et al. The cervical lymph node contributes to peripheral inflammation related to parkinson's disease[J]. J Neuroinflammation, 2023, 20(1): 93. doi:10.1186/s12974-023-02770-5
doi: 10.1186/s12974-023-02770-5 |
[1] | Yingying GAN,Min HU,Shuya CUI,Zhi CHAI,Huijie FAN. Research progress of bone morphogenetic protein signaling pathway in central nervous system [J]. The Journal of Practical Medicine, 2025, 41(1): 141-145. |
[2] | Jie SHEN,Guihua. XU. Research progress in the relationship between Alzheimer′s disease and blood⁃brain barrier [J]. The Journal of Practical Medicine, 2024, 40(11): 1602-1606. |
[3] | Yanwei HUANG,Kaitai ZENG,Ziqi WEN,Yan LI,Rongping. CHEN. Markers of gut flora in Parkinson′s disease: A literature review [J]. The Journal of Practical Medicine, 2024, 40(11): 1473-1478. |
[4] | Sha LI,Chun′ai CUI. Progress in targeted research of forkhead box protein O3a in degenerative disease [J]. The Journal of Practical Medicine, 2024, 40(3): 423-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||