The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (16): 2597-2603.doi: 10.3969/j.issn.1006-5725.2025.16.023
• Reviews • Previous Articles Next Articles
Yue HE,Kexin CHENG,Yanqiu LI,Yujun HOU,Siyuan. ZHOU()
Received:
2025-02-27
Online:
2025-08-25
Published:
2025-08-28
Contact:
Siyuan. ZHOU
E-mail:zzsy6688@qq.com
CLC Number:
Yue HE,Kexin CHENG,Yanqiu LI,Yujun HOU,Siyuan. ZHOU. Research progress on intestinal barrier in irritable bowel syndrome pathogenesis[J]. The Journal of Practical Medicine, 2025, 41(16): 2597-2603.
[1] |
HUANG K Y, WANG F Y, LV M, et al. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment[J]. World J Gastroenterol, 2023, 29(26): 4120-4135. doi:10.3748/wjg.v29.i26.4120
doi: 10.3748/wjg.v29.i26.4120 |
[2] |
IONESCU V A, GHEORGHE G, GEORGESCU T F, et al. The latest data concerning the etiology and pathogenesis of irritable bowel syndrome[J]. J Clin Med, 2024, 13(17): 5124. doi:10.3390/jcm13175124
doi: 10.3390/jcm13175124 |
[3] |
CHEN Y, CUI W, LI X, et al. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease[J]. Front Immunol, 2021, 12: 761981. doi:10.3389/fimmu.2021.761981
doi: 10.3389/fimmu.2021.761981 |
[4] |
BARBARO M R, CREMON C, MARASCO G, et al. Molecular mechanisms underlying loss of vascular and epithelial integrity in irritable bowel syndrome[J]. Gastroenterology, 2024, 167(6): 1152-1166. doi:10.1053/j.gastro.2024.07.004
doi: 10.1053/j.gastro.2024.07.004 |
[5] |
UNTERSMAYR E, BRANDT A, KOIDL L, et al. The intestinal barrier dysfunction as driving factor of inflammaging[J]. Nutrients, 2022, 14(5): 949. doi:10.3390/nu14050949
doi: 10.3390/nu14050949 |
[6] |
HANNING N, EDWINSON AL, CEULEERS H, et al. Intestinal barrier dysfunction in irritable bowel syndrome: A systematic review[J]. Therap Adv Gastroenterol, 2021, 14: 1756284821993586. doi:10.1177/1756284821993586
doi: 10.1177/1756284821993586 |
[7] |
SCHOULTZ I, KEITA Å V. The intestinal barrier and current techniques for the assessment of gut permeability[J]. Cells, 2020, 9(8): 1909. doi:10.3390/cells9081909
doi: 10.3390/cells9081909 |
[8] |
ZHAO D Y, QI Q Q, LONG X, et al. Ultrastructure of intestinal mucosa in diarrhea-predominant irritable bowel syndrome[J]. Physiol Int, 2019, 106(3): 225-235. doi:10.1556/2060.106.2019.20
doi: 10.1556/2060.106.2019.20 |
[9] |
ZHAO J, DAI Y, TIAN J, et al. Impact of mechanical barrier damage and interleukin-17 on symptoms in patients with post-infectious irritable bowel syndrome[J]. Br J Hosp Med(Lond), 2024, 85(7): 1-13. doi:10.12968/hmed.2024.0114
doi: 10.12968/hmed.2024.0114 |
[10] |
VENGE P, TEJERA V C, PETERSSON C, et al. Elevated fecal biomarkers of colo‐rectal epithelial cell activity in irritable bowel syndrome[J].Neurogastroenterol Motil, 2025,37(4):e14984. doi:10.1111/nmo.14984
doi: 10.1111/nmo.14984 |
[11] |
WANG J, ZHAO D, LEI Z, et al. TRIM27 maintains gut homeostasis by promoting intestinal stem cell self-renewal[J]. Cell Mol Immunol, 2023, 20(2): 158-174. doi:10.1038/s41423-022-00963-1
doi: 10.1038/s41423-022-00963-1 |
[12] | 许帮荣, 蒋正华, 陈鑫, 等. miRNA在肠黏膜屏障功能中的作用研究进展[J]. 实用医学杂志, 2025, 41(7): 1079-1083. |
[13] |
XI M, ZHAO P, LI F, et al. MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea[J].J Biol Chem, 2022, 298(11): 102461. doi:10.1016/j.jbc.2022.102461
doi: 10.1016/j.jbc.2022.102461 |
[14] |
XU R, LIU X, TIAN M, et al. Atractylodes-I overcomes the oxidative stress-induced colonic mucosal epithelial cells dysfunction to prevent irritable bowel syndrome via modulating the miR-34a-5p-LDHA signaling pathway[J]. Curr Mol Med, 2023, 23(8): 825-833. doi:10.2174/1566524022666220811161111
doi: 10.2174/1566524022666220811161111 |
[15] |
BALDA M S, MATTER K. Tight junctions[J]. Curr Biol, 2023, 33(21): R1135-R1140. doi:10.1016/j.cub.2023.09.027
doi: 10.1016/j.cub.2023.09.027 |
[16] |
MEOLI L, GÜNZEL D. Channel functions of claudins in the organization of biological systemsclaudins[J]. Biochim Biophys Acta Biomembr, 2020, 1862(9): 183344. doi:10.1016/j.bbamem.2020.183344
doi: 10.1016/j.bbamem.2020.183344 |
[17] |
AWAD K, BARMEYER C, BOJARSKI C, et al. Epithelial barrier dysfunction in diarrhea-predominant irritable bowel syndrome (IBS-D) via downregulation of claudin-1[J]. Cells, 2023, 12(24): 2846. doi:10.3390/cells12242846
doi: 10.3390/cells12242846 |
[18] | 王玲玲, 柏茂树, 吴至久. 基于AQP3/claudin-1研究痛泻要方治疗腹泻型肠易激综合征模型大鼠的机制[J]. 辽宁中医杂志, 2024, 51(3): 200-204, 229. |
[19] |
HORIE H, HANDA O, NAITO Y, et al. Subepithelial serotonin reduces small intestinal epithelial cell tightness via reduction of occluding expression[J]. Turk J Gastroenterol, 2022, 33(1): 74-79. doi:10.5152/tjg.2022.20691
doi: 10.5152/tjg.2022.20691 |
[20] |
YU S, HE J, XIE K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis[J]. Int J Biol Sci, 2023, 19(12): 3804-3815. doi:10.7150/ijbs.85765
doi: 10.7150/ijbs.85765 |
[21] |
HE Y Q, ZHU J R, SUN W J, et al. ZO-1 and IL-1RAP phosphorylation: Potential role in mediated brain-gut axis dysregulation in irritable bowel syndrome-like stressed mice[J]. Int J Med Sci, 2024, 21(9): 1738-1755. doi:10.7150/ijms.95848
doi: 10.7150/ijms.95848 |
[22] |
LEE J Y, KIM N, PARK J H, et al. Expression of neurotrophic factors, tight junction proteins, and cytokines according to the irritable bowel syndrome subtype and sex[J]. J Neurogastroenterol Motil, 2020, 26(1): 106-116. doi:10.5056/jnm19099
doi: 10.5056/jnm19099 |
[23] |
KIM S U, CHOI J A, HAN M H, et al. Tight junction protein changes in irritable bowel syndrome: The relation of age and disease severity[J]. Korean J Int Med, 2024, 39(6): 906-916. doi:10.3904/kjim.2024.097
doi: 10.3904/kjim.2024.097 |
[24] |
CHAI W H, MA Y, LI J J, et al. Immune cell signatures and causal association with irritable bowel syndrome: A mendelian randomization study[J]. World J Clinical Cases, 2024, 12(17):3094-3104. doi:10.12998/wjcc.v12.i17.3094
doi: 10.12998/wjcc.v12.i17.3094 |
[25] |
VAN REMOORTEL S, HUSSEIN H, BOECKXSTAENS G. Mast cell modulation: A novel therapeutic strategy for abdominal pain in irritable bowel syndrome[J]. Cell Rep Med, 2024, 5(10): 101780. doi:10.1016/j.xcrm.2024.101780
doi: 10.1016/j.xcrm.2024.101780 |
[26] |
HASLER W L, GRABAUSKAS G, SINGH P, et al. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome[J]. Neurogastroenterol Motil, 2022, 34(7): e14339. doi:10.1111/nmo.14339
doi: 10.1111/nmo.14339 |
[27] |
MEIRA DE-FARIA F, CASADO-BEDMAR M, MÅRTEN LINDQVIST C, et al. Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome[J]. Neurogastroenterol Motil, 2021, 33(11): e14130. doi:10.1111/nmo.14130
doi: 10.1111/nmo.14130 |
[28] |
DECRAECKER L, ESTÉVEZ M C, REMOORTEL S V, et al. Characterisation of MRGPRX2+ mast cells in irritable bowel syndrome[J]. Gut, 2025,74(7):1068-1077. doi:10.1136/gutjnl-2024-334037
doi: 10.1136/gutjnl-2024-334037 |
[29] |
KIM H J, KIM H, LEE J H, et al. Toll-like receptor 4 (TLR4): New insight immune and aging[J]. Immun Ageing, 2023, 20(1): 67. doi:10.1186/s12979-023-00383-3
doi: 10.1186/s12979-023-00383-3 |
[30] |
ZHOU G Q, HUANG M J, YU X, et al. Early life adverse exposures in irritable bowel syndrome: New insights and opportunities[J]. Front Pediatr, 2023, 11:124801. doi:10.3389/fped.2023.1241801
doi: 10.3389/fped.2023.1241801 |
[31] |
WAN X, WANG L, WANG Z, et al. Toll-like receptor 4 plays a vital role in irritable bowel syndrome: A scoping review[J]. Front Immunol, 2024, 15: 1490653. doi:10.3389/fimmu.2024.1490653
doi: 10.3389/fimmu.2024.1490653 |
[32] |
BELMONTE L, YOUMBA S B, BERTIAUX-VANDAËLE N, et al. Role of toll like receptors in irritable bowel syndrome: Differential mucosal immune activation according to the disease subtype[J]. PLoS One, 2012, 7(8): e42777. doi:10.1371/journal.pone.0042777
doi: 10.1371/journal.pone.0042777 |
[33] |
SHUKLA R, GHOSHAL U, RANJAN P, et al. Expression of toll-like receptors, pro-, and anti-inflammatory cytokines in relation to gut microbiota in irritable bowel syndrome: The evidence for its micro-organic basis[J]. J Neurogastroenterol Motil, 2018, 24(4): 628-642. doi:10.5056/jnm18130
doi: 10.5056/jnm18130 |
[34] |
SHIMBORI C, DE PALMA G, BAERG L, et al. Gut bacteria interact directly with colonic mast cells in a humanized mouse model of IBS[J]. Gut Microbes, 2022, 14(1):2105095. doi:10.1080/19490976.2022.2105095
doi: 10.1080/19490976.2022.2105095 |
[35] |
ZHOU H H, ZHANG Y M, ZHANG S P, et al. Suppression of PTRF alleviates post-infectious irritable bowel syndrome via downregulation of the TLR4 pathway in rats[J]. Front Pharmacol, 2021, 12:724410. doi:10.3389/fphar.2021.724410
doi: 10.3389/fphar.2021.724410 |
[36] |
MEYER F, WENDLING D, DEMOUGEOT C, et al. Cytokines and intestinal epithelial permeability: A systematic review[J]. Autoimmun Rev, 2023, 22(6): 103331. doi:10.1016/j.autrev.2023.103331
doi: 10.1016/j.autrev.2023.103331 |
[37] |
CRAWFORD C K, LOPEZ CERVANTES V, QUILICI M L, et al. Inflammatory cytokines directly disrupt the bovine intestinal epithelial barrier[J]. Sci Rep, 2022, 12(1): 14578. doi:10.1038/s41598-022-18771-y
doi: 10.1038/s41598-022-18771-y |
[38] |
NORLIN A K, WALTER S, ICENHOUR A, et al. Fatigue in irritable bowel syndrome is associated with plasma levels of TNF-α and mesocorticolimbic connectivity[J]. Brain Behav Immun, 2021, 92: 211-222. doi:10.1016/j.bbi.2020.11.035
doi: 10.1016/j.bbi.2020.11.035 |
[39] |
CHEN L J, PLANTINGA A M, BURR R, et al. Exploration of cytokines and microbiome among males and females with diarrhea-predominant irritable bowel syndrome[J]. Dig Dis Sci, 2025, 70(3): 1043-1051. doi:10.1007/s10620-024-08836-5
doi: 10.1007/s10620-024-08836-5 |
[40] |
SANG X, WANG Q, NING Y, et al. Age-related mucus barrier dysfunction in mice is related to the changes in Muc2 mucin in the colon[J]. Nutrients, 2023, 15(8): 1830. doi:10.3390/nu15081830
doi: 10.3390/nu15081830 |
[41] |
XU Y, XIONG Y, LIU Y, et al. Activation of goblet cell Piezo1 alleviates mucus barrier damage in mice exposed to WAS by inhibiting H3K9me3 modification[J]. Cell Biosci, 2023, 13(1): 7. doi:10.1186/s13578-023-00952-5
doi: 10.1186/s13578-023-00952-5 |
[42] |
ALONSO-COTONER C, ABRIL-GIL M, ALBERT-BAYO M, et al. The role of purported mucoprotectants in dealing with irritable bowel syndrome, functional diarrhea, and other chronic diarrheal disorders in adults[J]. Adv Ther, 2021, 38(5): 2054-2076. doi:10.1007/s12325-021-01676-z
doi: 10.1007/s12325-021-01676-z |
[43] |
OKUMURA R, TAKEDA K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation[J]. Semin Immunopathol, 2024, 47(1): 2. doi:10.1007/s00281-024-01026-5
doi: 10.1007/s00281-024-01026-5 |
[44] |
FUSCO A, SAVIO V, DONNIACUO M, et al. Antimicrobial peptides human beta-defensin-2 and -3 protect the gut during candida albicans infections enhancing the intestinal barrier integrity: In vitro study[J]. Front Cell Infect Microbiol, 2021, 11:666900. doi:10.3389/fcimb.2021.666900
doi: 10.3389/fcimb.2021.666900 |
[45] |
SHULMAN R J, DEVARAJ S, HEITKEMPER M. Activation of the innate immune system in children with irritable bowel syndrome evidenced by increased fecal human β-defensin-2[J]. Clin Gastroenterol Hepatol, 2021, 19(10): 2121-2127. doi:10.1016/j.cgh.2020.09.034
doi: 10.1016/j.cgh.2020.09.034 |
[46] |
SAPIB Z, DE PALMA G, LU J, et al. Alterations in fecal β-defensin-3 secretion as a marker of instability of the gut microbiota[J]. Gut Microbes, 2023, 15(1): 2233679. doi:10.1080/19490976.2023.2233679
doi: 10.1080/19490976.2023.2233679 |
[47] |
CHOPYK D M, GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863. doi:10.1053/j.gastro.2020.04.077
doi: 10.1053/j.gastro.2020.04.077 |
[48] |
PARDO-CAMACHO C, GANDA MALL J P, MARTÍNEZ C, et al. Mucosal plasma cell activation and proximity to nerve fibres are associated with glycocalyx reduction in diarrhoea-predominant irritable bowel syndrome: Jejunal barrier alterations underlying clinical manifestations[J]. Cells, 2022, 11(13): 2046. doi:10.3390/cells11132046
doi: 10.3390/cells11132046 |
[49] |
HOU J J, WANG X, LI Y, et al. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome[J]. Microb Pathog, 2021, 157: 104995. doi:10.1016/j.micpath.2021.104995
doi: 10.1016/j.micpath.2021.104995 |
[50] |
SU Q, TUN H M, LIU Q, et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome[J]. Gut Microbes, 15(1): 2157697. doi:10.1080/19490976.2022.2157697
doi: 10.1080/19490976.2022.2157697 |
[51] | 窦鑫, 贺昌辉, 梅笑, 等. 基于“短链脂肪酸-肠屏障”途径探讨中药在腹泻型肠易激综合征中的干预研究进展[J]. 实用医学杂志, 2024, 40(15): 2177-2182. |
[52] |
EL-SALHY M, VALEUR J, HAUSKEN T, et al. Changes in fecal short-chain fatty acids following fecal microbiota transplantation in patients with irritable bowel syndrome[J]. Neurogastroenterol Motil, 2021, 33(2): e13983. doi:10.1111/nmo.13983
doi: 10.1111/nmo.13983 |
[53] |
TEIGE E S, HILLESTAD E M R, STEINSVIK E K, et al. Fecal bacteria and short-chain fatty acids in irritable bowel syndrome: Relations to subtype[J]. Neurogastroenterol Motil, 2024, 36(9): e14854. doi:10.1111/nmo.14854
doi: 10.1111/nmo.14854 |
[54] |
WU B Y, XU P, CHENG L, et al. The alteration of mucosal bile acid profile is associated with nerve growth factor expression in mast cells and bowel symptoms in diarrhea-predominant irritable bowel syndrome[J]. Clin Exp Immunol, 2024, 216(2): 200-210. doi:10.1093/cei/uxae006
doi: 10.1093/cei/uxae006 |
[55] |
YU L M, MAO L Q, WU C Y, et al. Chlorogenic acid improves intestinal barrier function by downregulating CD14 to inhibit the NF-κB signaling pathway[J]. J Funct Foods, 2021, 85: 104640. doi:10.1016/j.jff.2021.104640
doi: 10.1016/j.jff.2021.104640 |
[56] |
LINSALATA M, RIEZZO G, ORLANDO A, et al. The role of intestinal barrier function in overweight patients with IBS with diarrhea undergoing a long-term low fermentable oligo-, di-, and monosaccharide and polyol diet[J]. Nutrients, 2023, 15(21): 4683. doi:10.3390/nu15214683
doi: 10.3390/nu15214683 |
[57] |
NEE J, LEMBO A. Review article: Current and future treatment approaches for IBS with diarrhoea (IBS‐D) and IBS mixed pattern (IBS‐M)[J].Aliment Pharmacol Ther, 2021,54():S63-S74. doi:10.1111/apt.16625
doi: 10.1111/apt.16625 |
[58] |
ZHEN Z, XIA L, YOU H, et al. An integrated gut microbiota and network pharmacology study on fuzi-lizhong pill for treating diarrhea-predominant irritable bowel syndrome[J]. Front Pharmacol, 2021, 12:746923. doi:10.3389/fphar.2021.746923
doi: 10.3389/fphar.2021.746923 |
[59] |
MA X, HUANG J, WU H, et al. Uncovering the multitarget therapeutic mechanism of tong‐xie‐yao‐fang on irritable bowel syndrome[J].J Food Qual,2024,2024(1):8195739. doi:10.1155/2024/8195739
doi: 10.1155/2024/8195739 |
[60] |
HOU Y, CHANG X, LIU N, et al. Different acupuncture and moxibustion therapies in the treatment of IBS-D with anxiety and depression: A network meta-analysis[J]. Medicine(Baltimore), 2024, 103(17): e37982. doi:10.1097/md.0000000000037982
doi: 10.1097/md.0000000000037982 |
[61] |
FU Y, DING X, ZHANG M, et al. Intestinal mucosal barrier repair and immune regulation with an AI-developed gut-restricted PHD inhibitor[J]. Nat Biotechnol, 2024. doi: 10.1038/s41587-024-02503-w . Epub ahead of print.
doi: 10.1038/s41587-024-02503-w |
[1] | Yuanxin MA,Xiao MEI,Yunzheng WANG,Wei WANG. Research progress on the mechanism of TRPV1 in visceral hypersensitivity of IBS-D and acupuncture interventions [J]. The Journal of Practical Medicine, 2025, 41(7): 1084-1090. |
[2] | Rongmao HE,Zeyang FANG,Yunyun ZHANG,Youliang WU,Shixiu LIANG,Siqi WANG. Protective effect of basic alkaline ceramidase 1 in ulcerative colitis [J]. The Journal of Practical Medicine, 2025, 41(1): 7-14. |
[3] | Xin LING,Jiaping QIAN,Dongtao SHI,Jun YANG,Peili FEI. Effects of simethicone on gastrointestinal hormones, intestinal floras and inflammatory process mediated by NLRP3 inflammasome in patients with irritable bowel syndrome [J]. The Journal of Practical Medicine, 2024, 40(2): 237-241. |
[4] | Xin DOU,Changhui HE,Xiao MEI,Haidi PAN,Yuanxin MA,Wei. WANG. Research progress on the intervention of traditional Chinese medicine in IBS⁃D based on the "SCFAs⁃intestinal barrier" pathway [J]. The Journal of Practical Medicine, 2024, 40(15): 2177-2182. |
[5] | ZHANG Xiaodan, LIANG Ping, LIANG Jing, WANG Hongbo, SU Jiangwei. . Effects of Bacillus Subtilis and Enterococcus Faecium Enteric ⁃coated Capsules on intestinal barrier func⁃ tion and expression of Th9 cells in liver cirrhosis patients with different hepatic reserve function [J]. The Journal of Practical Medicine, 2023, 39(14): 1820-1824. |
[6] |
LI Yanwei, WANG Bin, MIAO Yulu, LI Xiao⁃ jin, ZHANG Yadong, HAN Juan, ZHUANG Pengwei, ZHANG Yanjun..
Research progress of intestinal barrier dysfunction in sepsis [J]. The Journal of Practical Medicine, 2022, 38(7): 799-803. |
[7] | JIANG Xiaoling, HE Yihuai, WAN Di⁃anwei, LIU Xia, QIU Longmin. . Research progress of effect of endotoxemia on chronic liver disease [J]. The Journal of Practical Medicine, 2022, 38(5): 638-643. |
[8] |
LV Mi, ZHANG Kunli, SHI Zhongfei, ZHENG Yijun, LIU Ping, YIN Xiaolan, WANG Fengyun. .
Current situation of overlap between FD and IBS based on Rome Ⅳ criteria [J]. The Journal of Practical Medicine, 2021, 37(9): 1213-1216. |
[9] |
JIANG Longyuan.
Research Advances in the role of immunodeficiency in Sepsis [J]. The Journal of Practical Medicine, 2021, 37(6): 701-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||