The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (17): 2406-2411.doi: 10.3969/j.issn.1006-5725.2024.17.009
• Clinical Research • Previous Articles Next Articles
Che CHEN1,Dehong LUO1,Huangfei YU1,Qin ZHANG1,Xiaochi HU2,Shenghua YU3,Yajun. LI1()
Received:
2023-12-06
Online:
2024-09-10
Published:
2024-09-13
Contact:
Yajun. LI
E-mail:Yajun790@163.com
CLC Number:
Che CHEN,Dehong LUO,Huangfei YU,Qin ZHANG,Xiaochi HU,Shenghua YU,Yajun. LI. Clinical Application of automatic delineation in whole breast radiotherapy with simultaneous integrated boost to the medial tumor beds[J]. The Journal of Practical Medicine, 2024, 40(17): 2406-2411.
Tab.2
Dosimetric comparison between the two groups(n = 30)"
结构 | 剂量参数 | 自动勾画 | 人工勾画 | 绝对差异(△) | t值 | P值 |
---|---|---|---|---|---|---|
靶区 | ||||||
PGTV | V95(%) | 99.27 ± 0.52 | 99.79 ± 0.27 | 0.55 ± 0.41* | -6.31 | < 0.001 |
D95(Gy) | 48.23 ± 0.71 | 48.65 ± 0.47 | 0.56 ± 0.39* | -4.19 | < 0.001 | |
Dmean(Gy) | 50.05 ± 0.23 | 50.12 ± 0.29 | 0.20 ± 0.19* | -1.39 | 0.18 | |
PTV | V95(%) | 96.77 ± 2.29 | 99.40 ± 0.45 | 2.64 ± 2.13 | -6.75 | < 0.001 |
D95(Gy) | 39.48 ± 2.35 | 41.43 ± 0.48 | 2.12 ± 2.02 | -4.88 | < 0.001 | |
Dmean(Gy) | 43.83 ± 0.68 | 44.36 ± 0.44 | 0.56 ± 0.40 | -5.95 | < 0.001 | |
危及器官 | ||||||
左肺 | V5(%) | 46.09 ± 4.41 | 46.28 ± 4.46 | 0.19 ± 2.29 | -0.31 | 0.76 |
V20(%) | 19.18 ± 1.59 | 18.39 ± 1.76 | 0.98 ± 1.09 | 3.48 | 0.02 | |
MLD(Gy) | 10.22 ± 0.79 | 9.87 ± 0.79 | 0.48 ± 0.50* | 3.19 | 0.03 | |
心脏 | V8(%) | 18.31 ± 2.28 | 18.61 ± 2.35 | 0.30 ± 2.58 | -0.74 | 0.47 |
V30(%) | 4.67 ± 1.94 | 4.64 ± 2.03 | 0.03 ± 1.40 | 0.15 | 0.89 | |
MHD(Gy) | 5.41 ± 0.82 | 5.49 ± 0.85 | 0.08 ± 0.69* | -0.79 | 0.44 |
1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660 |
2 |
ANDRIANARISON V A, LAOUITI M, FARGIER-BOCHATON O, et al. Contouring workload in adjuvant breast cancer radiotherapy[J]. Cancer Radiother, 2018,22(8):747-753. doi:10.1016/j.canrad.2018.01.008
doi: 10.1016/j.canrad.2018.01.008 |
3 |
LI X A, ARTHUR D W, BUCHHOLZ T A, et al. Variability of target and normal structure delineation for breast-cancer radiotherapy: A RTOG multi-institutional and multi-observer study[J]. Int J Radiat Oncol Biol Phys, 2009,73(3):944-951. doi:10.1016/j.ijrobp.2008.10.034
doi: 10.1016/j.ijrobp.2008.10.034 |
4 | 陈飞, 龚筱钦, 余云鹏, 等. AccuLearning自动勾画临床靶区和危及器官用于宫颈癌术后放疗的可行性研究[J]. 实用医学杂志, 2024,40(2):153-157. |
5 |
RADICI L, FERRARIO S, BORCA V C, et al. Implementation of a commercial deep learning-based auto segmentation software in radiotherapy: Evaluation of effectiveness and impact on workflow[J]. Life (Basel), 2022,12(12):2088. doi:10.3390/life12122088
doi: 10.3390/life12122088 |
6 | 邢碧媛, 盛宇涵, 赵迎超, 等. 人工智能在恶性肿瘤放射治疗领域的相关应用及进展[J]. 临床肿瘤学杂志, 2020,25(7):656-663. |
7 |
VINOD S K, JAMESON M G, MIN M, et al. Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies[J]. Radiother Oncol, 2016,121(2):169-179. doi:10.1016/j.radonc.2016.09.009
doi: 10.1016/j.radonc.2016.09.009 |
8 |
何奕松, 蒋家良, 余行, 等. 影像分割中Dice系数和Hausdorff距离的比较[J]. 中国医学物理学杂志, 2019,36(11):1307-1311. doi:10.3969/j.issn.1005-202X.2019.11.012
doi: 10.3969/j.issn.1005-202X.2019.11.012 |
9 |
AHN S H, YEO A U, KIM K H, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer[J]. Radiat Oncol, 2019,14(1):213. doi:10.1186/s13014-019-1392-z
doi: 10.1186/s13014-019-1392-z |
10 |
ANDREWS S, HAMARNEH G. Multi-Region Probabilistic Dice Similarity Coefficient using the Aitchison Distance and Bipartite Graph Matching[J]. Computer Science, 2015. DOI:10.48550/arXiv.1509.07244 .
doi: 10.48550/arXiv.1509.07244 |
11 |
BAROUDI H, BROCK K K, CAO W, et al. Automated contouring and planning in radiation therapy: What is 'clinically acceptable'?[J]. Diagnostics (Basel), 2023,13(4):667. doi:10.3390/diagnostics13040667
doi: 10.3390/diagnostics13040667 |
12 |
MACCHIA G, CILLA S, BUWENGE M, et al. Intensity-modulated radiotherapy with concomitant boost after breast conserving surgery: A Phase I-II trial[J]. Breast Cancer (Dove Med Press), 2020,12:243-249. doi:10.2147/bctt.s261587
doi: 10.2147/bctt.s261587 |
13 |
ANDRADE T R M, FONSECA M C M, SEGRETO H R C, et al. Meta-analysis of long-term efficacy and safety of hypofractionated radiotherapy in the treatment of early breast cancer[J]. Breast, 2019,48:24-31. doi:10.1016/j.breast.2019.08.001
doi: 10.1016/j.breast.2019.08.001 |
14 | 陈车, 陈睿, 陆治江, 等. 多叶准直器角度改变对左侧全乳大分割放疗瘤床推量的剂量学影响[J]. 辐射研究与辐射工艺学报, 2023,41(4):53-59. |
15 |
VANDEWINCKELE L, CLAESSENS M, DINKLA A, et al. Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance[J]. Radiother Oncol, 2020,153:55-66. doi:10.1016/j.radonc.2020.09.008
doi: 10.1016/j.radonc.2020.09.008 |
16 |
LOI G, FUSELLA M, LANZI E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient‐based computational phantoms: A multi‐institutional study[J]. Med Phys, 2018,45(2):748-757. doi:10.1002/mp.12737
doi: 10.1002/mp.12737 |
17 |
ZHOU H, LI Y, GU Y, et al. A deep learning based automatic segmentation approach for anatomical structures in intensity modulation radiotherapy[J]. Math Biosci Eng, 2021,18(6):7506-7524. doi:10.3934/mbe.2021371
doi: 10.3934/mbe.2021371 |
18 |
GUO B, SHAH C, XIA P. Automated planning of whole breast irradiation using hybrid IMRT improves efficiency and quality[J]. J Appl Clin Med Phys, 2019,20(12):87-96. doi:10.1002/acm2.12767
doi: 10.1002/acm2.12767 |
19 |
VOET P W J, DIRKX M L P, TEGUH D N, et al. Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis[J]. Radiother Oncol, 2011,98(3):373-377. doi:10.1016/j.radonc.2010.11.017
doi: 10.1016/j.radonc.2010.11.017 |
20 |
GUO H, WANG J, XIA X, et al. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer[J]. Radiat Oncol, 2021,16(1):113. doi:10.1186/s13014-021-01837-y
doi: 10.1186/s13014-021-01837-y |
21 |
YAN C, GUO B, TENDULKAR R, et al. Contour similarity and its implication on inverse prostate SBRT treatment planning[J]. J Appl Clin Med Phys, 2023,24(2):e13809. doi:10.1002/acm2.13809
doi: 10.1002/acm2.13809 |
22 |
POEL R, RÜFENACHT E, HERMANN E, et al. The predictive value of segmentation metrics on dosimetry in organs at risk of the brain[J]. Med Image Anal, 2021,73:102161. doi:10.1016/j.media.2021.102161
doi: 10.1016/j.media.2021.102161 |
23 |
SHARP G, FRITSCHER K D, PEKAR V, et al. Vision 20/20: perspectives on automated image segmentation for radiotherapy[J]. Med Phys, 2014,41(5):50902. doi:10.1118/1.4871620
doi: 10.1118/1.4871620 |
24 |
DAI Z, ZHANG Y, ZHU L, et al. Geometric and dosimetric evaluation of deep learning-based automatic delineation on CBCT-Synthesized CT and planning CT for breast cancer adaptive radiotherapy: A multi-institutional study[J]. Front Oncol, 2021,11:725507. doi:10.3389/fonc.2021.725507
doi: 10.3389/fonc.2021.725507 |
25 |
CAO M, STIEHL B, YU V Y, et al. Analysis of geometric performance and dosimetric impact of using automatic contour segmentation for radiotherapy planning[J]. Front Oncol, 2020,10:1762. doi:10.3389/fonc.2020.01762
doi: 10.3389/fonc.2020.01762 |
26 |
BAROUDI H, MINH NGUYEN C I HUY, MAROONGROGE S, et al. Automated contouring and statistical process control for plan quality in a breast clinical trial[J]. Phys Imaging Radiat Oncol, 2023,28:100486. doi:10.1016/j.phro.2023.100486
doi: 10.1016/j.phro.2023.100486 |
27 |
ZHONG Y, GUO Y, FANG Y, et al. Geometric and dosimetric evaluation of deep learning based auto-segmentation for clinical target volume on breast cancer[J]. J Appl Clin Med Phys, 2023,24(7):e13951. doi:10.1002/acm2.13951
doi: 10.1002/acm2.13951 |
[1] | Zixu SONG,Guangzheng ZHU,Chenxu GUO,Jiaqi WU,Ligong ZHANG,Jun. QIAN. Expression of SLC35A2 and PFDN2 in breast cancer and its relationship with clinical observables and prognosis [J]. The Journal of Practical Medicine, 2024, 40(4): 496-502. |
[2] | Fei CHEN,Xiaoqin GONG,Yunpeng YU,Tao YOU,Xu WANG,Chunhua DAI,Jing HU. Feasibility of automatic segmentation of CTV and OARs in postoperative radiotherapy for cervical cancer using AccuLearning [J]. The Journal of Practical Medicine, 2024, 40(2): 153-157. |
[3] | Yinghua ZENG,Wenji LI,Li. ZHENG. The Impact of the timing of initial dressing change following PICC catheterization on postoperative breast cancer patients [J]. The Journal of Practical Medicine, 2024, 40(19): 2772-2777. |
[4] | Shaojin LI,Shipeng. ZHENG. Relevant preoperative imaging pathological features and tumor markers serve as predictive indicators for the risk of sentinel lymph node metastasis in breast cancer [J]. The Journal of Practical Medicine, 2024, 40(17): 2418-2424. |
[5] | Lingyu FANG,Jinghua HU,Junfeng WEN,Shiqi HAN,Yali WANG,Lulan PU,Jingjia LI,Yi YANG,Shishan DENG,Lingmi HOU,Fangfang. ZHOU. Expression and significance of ubiquitin⁃specific proteases 20 and hypoxia inducible factor⁃1α in breast cancer [J]. The Journal of Practical Medicine, 2024, 40(16): 2270-2276. |
[6] | Kai LIAO,Yunhong TIAN,Ronghui ZHENG,Caixian HE,Jiyong PENG,Huijun LI. Reduction of head and neck lymphedema by placing dose limiting rings in the anterior and posterior regions of the neck for treating early nasopharyngeal carcinoma using intensity-modulated radiotherapy: A dosimetric perspective [J]. The Journal of Practical Medicine, 2024, 40(12): 1659-1664. |
[7] |
AI Yongbiao, HUANG Jun, YUAN Jie, LI Wenfang..
Androgen receptor expression in early triple negative breast cancer and its association with the clinicopath⁃ ological features and prognosis [J]. The Journal of Practical Medicine, 2023, 39(8): 975-979. |
[8] | Xiran SHI,Heng WANG,Libing HE,Zhiqiang QIU,Hongjian LI,Xiaoxue. XU. Advance in predicting lymph node metastasis of breast cancer by multimodal MRI [J]. The Journal of Practical Medicine, 2023, 39(22): 2861-2865. |
[9] | Yadan CHE,Lixia. LI. Reaserch progress on small molecule anti⁃angiogenic drugs for advanced breast cancer [J]. The Journal of Practical Medicine, 2023, 39(22): 2866-2871. |
[10] | Zhaowei ZHUANG,Wumei YUAN,Zuodong REN,Shangfei LI,Minggui CHEN,Yan. ZENG. Expression and significance of granzyme B and perforin in peripheral blood of patients with breast cancer [J]. The Journal of Practical Medicine, 2023, 39(22): 2872-2877. |
[11] | Haiying LIU,Feng CHEN,Jia. YAO. Suppression of miR-767-5p expression of inhibits breast cancer cell proliferation, migration, invasion and EMT through down-regulating IGF1 [J]. The Journal of Practical Medicine, 2023, 39(22): 2878-2884. |
[12] | Zhenghua ZHANG,Rongfu GONG,Wen. FANG. FGF2 gene knockout inhibits MCF⁃7 cell proliferation, motility and invasion while promotes cell apoptosis [J]. The Journal of Practical Medicine, 2023, 39(22): 2885-2890. |
[13] | Yan LV,Xu ZHENG,Yanyan HAN,Shan GAO,Chong LI,Qiang. GENG. Effect of CCN5 gene knock⁃down on the proliferation of MCF⁃7 breast cancer cells and its mechanism [J]. The Journal of Practical Medicine, 2023, 39(22): 2898-2902. |
[14] | Yao MENG,Zhao LIU,Jing ZHANG,Changxiao. ZHAO. Comparison of curative effect and prognosis of preserving nipple and areola in patients with breast cancer by different reconstruction operations [J]. The Journal of Practical Medicine, 2023, 39(22): 2903-2908. |
[15] | Yuling LI,Jianlin YANG,Zhi CUI,Jing WANG,Yafeng LV,Chunyu. CAO. Effect of BMI-1 inhibitor PTC-596 on proliferation, cell cycle, and apoptosis of human breast cancer MCF-7cells [J]. The Journal of Practical Medicine, 2023, 39(18): 2317-2322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||