1 |
北京医学会罕见病分会, 北京医学会神经内科分会神经肌肉病学组, 中国线粒体病协作组. 中国线粒体脑肌病伴高乳酸血症和卒中样发作的诊治专家共识[J]. 中华神经科杂志, 2020,53(3):171-178. doi:10.3760/cma.j.issn.1006-7876.2020.03.003
doi: 10.3760/cma.j.issn.1006-7876.2020.03.003
|
2 |
王凯莉, 陈卫刚, 丁新, 等. 线粒体转录因子A在食管鳞癌中的表达及其机制[J].实用医学杂志, 2020,36(9):1164-1171. doi:10.3969/j.issn.1006-5725.2020.09.010
doi: 10.3969/j.issn.1006-5725.2020.09.010
|
3 |
RUSSELL O, TURNBULL D. Mitochondrial DNA disease-molecular insights and potential routes to a cure[J]. Exp Cell Res, 2014, 325(1): 38-43. doi:10.1016/j.yexcr.2014.03.012
doi: 10.1016/j.yexcr.2014.03.012
|
4 |
SKEIE J M, NISHIMURA D Y, WANG C L, et al. Mitophagy: An Emerging Target in Ocular Pathology[J]. Invest Ophthalmol Vis Sci, 2021,62(3):22. doi:10.1167/iovs.62.3.22
doi: 10.1167/iovs.62.3.22
|
5 |
金晶, 刘雨朦, 张栋, 等. 缺氧条件下CK1δ和PER1可调控BV2细胞的线粒体形态[J].实用医学杂志,2021,37(9):1111-1116. doi:10.3969/j.issn.1006-5725.2021.09.003
doi: 10.3969/j.issn.1006-5725.2021.09.003
|
6 |
SUZUKI T, NAGAO A, SUZUKI T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases[J]. Annu Rev Genet, 2011,45:299-329. doi:10.1146/annurev-genet-110410-132531
doi: 10.1146/annurev-genet-110410-132531
|
7 |
DUCHEN M R, SZABADKAI G. Roles of mitochondria in human disease[J]. Essays Biochem, 2010,47:115-137. doi:10.1042/bse0470115
doi: 10.1042/bse0470115
|
8 |
NG Y S, BINDOFF L A, GORMAN G S, et al. Mitochondrial disease in adults: recent advances and future promise[J]. Lancet Neurol, 2021,20(7):573-584. doi:10.1016/s1474-4422(21)00098-3
doi: 10.1016/s1474-4422(21)00098-3
|
9 |
FAN H C, LEE H F, YUE C T, et al. Clinical Characteristics of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes[J]. Life (Basel), 2021, 11(11):1111. doi:10.3390/life11111111
doi: 10.3390/life11111111
|
10 |
MAJAMAA K, MOILANEN J S, UIMONEN S, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population[J]. Am J Hum Genet, 1998,63(2):447-454. doi:10.1086/301959
doi: 10.1086/301959
|
11 |
GOTO Y, NONAKA I, HORAI S. A mutation in the tRNA (Leu) (UUR) gene associated w ith the MELAS subgroup of mitochondrial encephalomyopathies[J]. Nature, 1990,348(6302):651-653. doi:10.1038/348651a0
doi: 10.1038/348651a0
|
12 |
IKEDA T, OSAKA H, SHIMBO H, et al. Mitochondrial DNA 3243A > T mutation in a patient with MELAS syndrome[J]. Hum Genome Var, 2018, 5: 25. doi:10.1038/s41439-018-0026-6
doi: 10.1038/s41439-018-0026-6
|
13 |
DE LAAT P, KOENE S, VAN DEN HEUVEL L P, et al. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A>G mutation[J]. J Inherit Metab Dis, 2012,35(6):1059-1069. doi:10.1007/s10545-012-9465-2
doi: 10.1007/s10545-012-9465-2
|
14 |
GRADY J P, PICKETT S J, NG Y S, et al. mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease[J]. EMBO Mol Med, 2018,10(6):e8262. doi:10.15252/emmm.201708262
doi: 10.15252/emmm.201708262
|
15 |
BOGGAN R M, LIM A, TAYLOR R W, et al. Resolving complexity in mitochondrial disease: Towards precision medicine[J]. Mol Genet Metab, 2019,128(1/2):19-29. doi:10.1016/j.ymgme.2019.09.003
doi: 10.1016/j.ymgme.2019.09.003
|
16 |
SCHOLLE L M, ZIERZ S, MAWRIN C, et al. Heteroplasmy and Copy Number in the Common m.3243A>G Mutation-A Post-Mortem Genotype-Phenotype Analysis[J]. Genes (Basel), 2020,11(2):212. doi:10.3390/genes11020212
doi: 10.3390/genes11020212
|
17 |
LAZO S, NOREN H N, GREEN J, et al. Mitochondrial DNA in extracellular vesicles declines with age[J]. Aging Cell, 2021,20(1):e13283. doi:10.1111/acel.13283
doi: 10.1111/acel.13283
|
18 |
CARDENAS-ROBLEDO S, SABER TEHRANI A, BLUME G, et al. Visual, Ocular Motor, and Cochleo-Vestibular Loss in Patients With Heteroplasmic, Maternally-Inherited Diabetes Mellitus and Deafness (MIDD), 3243 Transfer RNA Mutation[J]. J Neuroophthalmol, 2016,36(2):134-140. doi:10.1097/wno.0000000000000340
doi: 10.1097/wno.0000000000000340
|
19 |
ZHANG R, WANG Y, YE K, et al. Independent impacts of aging on mitochondrial DNA quantity and quality in humans[J]. BMC Genomics, 2017,18(1):890. doi:10.1186/s12864-017-4287-0
doi: 10.1186/s12864-017-4287-0
|
20 |
WALKER M A, LAREAU C A, LUDWIG L S, et al. Purifying Selection against Pathogenic Mitochondrial DNA in Human T Cells[J]. N Engl J Med, 2020,383(16):1556-1563. doi:10.1056/nejmoa2001265
doi: 10.1056/nejmoa2001265
|
21 |
GRIGALIONIENEĖ K, BURNYTĖ B, AMBROZAITYTĖ L, et al. Wide diagnostic and genotypic spectrum in patients with suspected mitochondrial disease[J]. Orphanet J Rare Dis, 2023, 18(1): 307. doi:10.1186/s13023-023-02921-0
doi: 10.1186/s13023-023-02921-0
|
22 |
SHI Y, CHEN G, SUN D, et al. Phenotypes and genotypes of mitochondrial diseases with mtDNA variations in Chinese children: A multi-center study[J]. Mitochondrion, 2022, 62: 139-150. doi:10.1016/j.mito.2021.11.006
doi: 10.1016/j.mito.2021.11.006
|
23 |
CHAKRABARTY S, GOVINDARAJ P, SANKARAN B P, et al. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome[J]. J Neurol, 2021, 268(6): 2192-2207. doi:10.1007/s00415-020-10390-9
doi: 10.1007/s00415-020-10390-9
|
24 |
RONG E, WANG H, HAO S, et al. Heteroplasmy Detection of Mitochondrial DNA A3243G Mutation Using Quantitative Real-Time PCR Assay Based on TaqMan-MGB Probes[J]. Biomed Res Int, 2018,2018:1286480. doi:10.1155/2018/1286480
doi: 10.1155/2018/1286480
|
25 |
TOMITA K, INDO H P, SATO T, et al. Development of a sensitive double TaqMan Probe-based qPCR Angle-Degree method to detect mutation frequencies[J]. Mitochondrion, 2023, 70: 1-7. doi:10.1016/j.mito.2023.02.010
doi: 10.1016/j.mito.2023.02.010
|
26 |
SHOOP W K, GORSUCH C L, BACMAN S R, et al. Precise and simultaneous quantification of mitochondrial DNA heteroplasmy and copy number by digital PCR[J]. J Biol Chem, 2022,298(11):102574. doi:10.1016/j.jbc.2022.102574
doi: 10.1016/j.jbc.2022.102574
|
27 |
FAYSSOI A, LAFORÊT P, BOUGOUIN W, et al. Prediction of long-term prognosis by heteroplasmy levels of the m.3243A>G mutation in patients with the mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome[J]. Eur J Neurol, 2017,24(2):255-261. doi:10.1111/ene.13176
doi: 10.1111/ene.13176
|
28 |
NG Y S, LAX N Z, BLAIN A P, et al. Forecasting stroke-like episodes and outcomes in mitochondrial disease[J]. Brain, 2022,145(2):542-554. doi:10.1093/brain/awab353
doi: 10.1093/brain/awab353
|
29 |
LIEW S S, QIN X, ZHOU J, et al. Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics[J]. Angew Chem Int Ed Engl, 2021,60(5):2232-2256. doi:10.1002/anie.201915826
doi: 10.1002/anie.201915826
|
30 |
KHAN S H. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application[J]. Mol Ther Nucleic Acids, 2019,16:326-334. doi:10.1016/j.omtn.2019.02.027
doi: 10.1016/j.omtn.2019.02.027
|
31 |
FOLMES C D, MARTINEZ-FERNANDEZ A, PERALES-CLEMENTE E, et al. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS[J]. Stem Cells, 2013,31(7):1298-1308. doi:10.1002/stem.1389
doi: 10.1002/stem.1389
|
32 |
LATCHMAN K, SAPORTA M, MORAES C T. Mitochondrial dysfunction characterized in human induced pluripotent stem cell disease models in M6ELAS syndrome: A brief summary[J]. Mitochondrion, 2023, 72: 102-105. doi:10.1016/j.mito.2023.08.003
doi: 10.1016/j.mito.2023.08.003
|
33 |
POVEA-CABELLO S, VILLANUEVA-PAZ M, VILLALÓN-GARCÍA I, et al. Modeling Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes Syndrome Using Patient-Derived Induced Neurons Generated by Direct Reprogramming[J]. Cell Reprogram, 2022, 24(5): 294-303. doi:10.1089/cell.2022.0055
doi: 10.1089/cell.2022.0055
|
34 |
LIN D, HUANG Y, HO C, et al. Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons[J]. Cells, 2023,12(1):15. doi:10.3390/cells12010015
doi: 10.3390/cells12010015
|