The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (24): 3802-3808.doi: 10.3969/j.issn.1006-5725.2025.24.002
• Brain Science and Psychosomatic Medicine • Previous Articles
Zhiyi CHEN,Sirui LIU,Jingxian HAN,Xuezhu. ZHANG(
)
Received:2025-07-29
Online:2025-12-25
Published:2025-12-25
Contact:
Xuezhu. ZHANG
E-mail:xzzhang@tjutcm.edu.cn
CLC Number:
Zhiyi CHEN,Sirui LIU,Jingxian HAN,Xuezhu. ZHANG. Interaction between DNA methylation and oxidative stress in Alzheimer′s disease: Bidirectional regulation and positive⁃feedback networks[J]. The Journal of Practical Medicine, 2025, 41(24): 3802-3808.
| [1] |
陈虹茹, 何川, 黄重生, 等. 电针联合重复经颅磁刺激对D-半乳糖诱导的阿尔茨海默病样模型大鼠学习记忆能力及神经炎症的影响[J]. 实用医学杂志, 2021, 37(12): 1534-1538. doi:10.3969/j.issn.1006
doi: 10.3969/j.issn.1006 |
| [2] | 梁璇, 慕静然, 骆延, 等. CRMP2磷酸化参与阿尔茨海默病的机制研究进展[J]. 实用医学杂志, 2024, 40(10): 1467-1472. |
| [3] |
LUO R, YU J T. New biomarkers for early-stage tau pathology in Alzheimer's disease[J]. Nat Aging, 2025, 5(5): 734-735. doi:10.1038/s43587-025-00854-w
doi: 10.1038/s43587-025-00854-w |
| [4] | 靳盼盼, 刘洋, 邱博, 等. 仑卡奈单抗在早期阿尔兹海默病治疗中的研究进展[J]. 中国临床药理学与治疗学, 2024, 29(2): 207-214. |
| [5] |
PRITAM P, DEKA R, BHARDWAJ A, et al. Antioxidants in Alzheimer's disease: Current therapeutic significance and future prospects[J]. Biology (Basel), 2022, 11(2): 212. doi:10.3390/biology11020212
doi: 10.3390/biology11020212 |
| [6] |
KAUR G, RATHOD S S S, GHONEIM M M, et al. DNA Methylation: A Promising Approach in Management of Alzheimer′s Disease and Other Neurodegenerative Disorders[J]. Biology(Basel), 2022, 11(1): 90. doi:10.3390/biology11010090
doi: 10.3390/biology11010090 |
| [7] |
BAI R, GUO J, YE X Y, et al. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease[J]. Ageing Res Rev, 2022, 77: 101619. doi:10.1016/j.arr.2022.101619
doi: 10.1016/j.arr.2022.101619 |
| [8] |
NAVABI S M, KOMI D E, AFSHARI D, et al. Adjunctive silymarin supplementation and its effects on disease severity, oxidative stress, and inflammation in patients with Alzheimer's disease[J]. Nutr Neurosci, 2024, 27(10): 1077-1087. doi:10.1080/1028415x.2023.2301163
doi: 10.1080/1028415x.2023.2301163 |
| [9] |
HAMPEL H, HARDY J, BLENNOW K, et al. The Amyloid-β pathway in Alzheimer's disease[J]. Mol Psychiatry, 2021, 26(10): 5481-5503. doi:10.1038/s41380-021-01249-0
doi: 10.1038/s41380-021-01249-0 |
| [10] | YU Y, YU S, BATTAGLIA G, et al. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects[J]. Ibrain, 2024, 10(3): 266-289. |
| [11] |
CHEIGNON C, TOMAS M, BONNEFONT-ROUSSELOT D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer's disease[J]. Redox Biol, 2018, 14: 450-464. doi:10.1016/j.redox.2017.10.014
doi: 10.1016/j.redox.2017.10.014 |
| [12] |
ZHANG Y, DONG Z, SONG W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer's disease[J]. Signal Transduct Target Ther, 2020, 5(1): 37. doi:10.1038/s41392-020-0145-7
doi: 10.1038/s41392-020-0145-7 |
| [13] |
SEDDON A R, MACARTHUR C P, HAMPTON M B, et al. Inflammation and DNA methylation in Alzheimer's disease: Mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain[J]. Redox Rep, 2024, 29(1): 2428152. doi:10.1080/13510002.2024.2428152
doi: 10.1080/13510002.2024.2428152 |
| [14] |
OSSENKOPPELE R, VAN DER KANT R, HANSSON O. Tau biomarkers in Alzheimer's disease: Towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-734. doi:10.1016/s1474-4422(22)00168-5
doi: 10.1016/s1474-4422(22)00168-5 |
| [15] |
ABYADEH M, GUPTA V, PAULO J A, et al. Amyloid-beta and tau protein beyond Alzheimer's disease[J]. Neural Regen Res, 2024, 19(6): 1262-1276. doi:10.4103/1673-5374.386406
doi: 10.4103/1673-5374.386406 |
| [16] |
YE J, WAN H, CHEN S, et al. Targeting tau in Alzheimer's disease: From mechanisms to clinical therapy[J]. Neural Regen Res, 2024, 19(7): 1489-1498. doi:10.4103/1673-5374.385847
doi: 10.4103/1673-5374.385847 |
| [17] |
BABIĆ LEKO M, LANGER HORVAT L, ŠPANIĆ POPOVAČKI E, et al. Metals in Alzheimer′s Disease[J]. Biomedicines, 2023, 11(4): 1161. doi:10.3390/biomedicines11041161
doi: 10.3390/biomedicines11041161 |
| [18] |
WANG L, YIN Y L, LIU X Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer's disease[J]. Transl Neurodegener, 2020, 9: 10. doi:10.1186/s40035-020-00189-z
doi: 10.1186/s40035-020-00189-z |
| [19] |
MIGLIORE L, COPPEDÈ F. Gene-environment interactions in Alzheimer disease: The emerging role of epigenetics[J]. Nat Rev Neurol, 2022, 18(11): 643-660. doi:10.1038/s41582-022-00714-w
doi: 10.1038/s41582-022-00714-w |
| [20] |
STRITTMATTER W J, SAUNDERS A M, SCHMECHEL D, et al. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease[J]. Proc Natl Acad Sci U S A, 1993, 90(5): 1977-1981. doi:10.1073/pnas.90.5.1977
doi: 10.1073/pnas.90.5.1977 |
| [21] |
FORTEA J, PEGUEROLES J, ALCOLEA D, et al. APOE4 homozygosity represents a distinct genetic form of Alzheimer's disease[J]. Nat Med, 2024, 30(5): 1284-1291. doi:10.1038/s41591-024-02931-w
doi: 10.1038/s41591-024-02931-w |
| [22] |
BAILEY M, ILCHOVSKA Z G, HOSSEINI A A, et al. Impact of Apolipoprotein E ε4 in Alzheimer's disease: A Meta-Analysis of Voxel-Based morphometry studies[J]. J Clin Neurol, 2024, 20(5): 469-477. doi:10.3988/jcn.2024.0176
doi: 10.3988/jcn.2024.0176 |
| [23] |
LI L, QIU Y, MIAO M, et al. Reduction of Tet2 exacerbates early stage Alzheimer's pathology and cognitive impairments in 2×Tg-AD mice[J]. Hum Mol Genet, 2020, 29(11): 1833-1852. doi:10.1093/hmg/ddz282
doi: 10.1093/hmg/ddz282 |
| [24] |
SIMS R, HILL M, WILLIAMS J. The multiplex model of the genetics of Alzheimer's disease[J]. Nat Neurosci, 2020, 23(3): 311-322. doi:10.1038/s41593-020-0599-5
doi: 10.1038/s41593-020-0599-5 |
| [25] |
QIN H Y, LIU J Y, FANG C L, et al. DNA methylation: The epigenetic mechanism of Alzheimer's disease[J]. Ibrain, 2023, 9(4): 463-472. doi:10.1002/ibra.12121
doi: 10.1002/ibra.12121 |
| [26] |
DE JAGER P L, SRIVASTAVA G, LUNNON K, et al. Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci[J]. Nat Neurosci, 2014, 17(9): 1156-1163. doi:10.1038/nn.3786
doi: 10.1038/nn.3786 |
| [27] |
ZHANG W, YOUNG J I, GOMEZ L, et al. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects[J]. Alzheimers Res Ther, 2023, 15(1): 78. doi:10.1186/s13195-023-01216-7
doi: 10.1186/s13195-023-01216-7 |
| [28] |
KAMINSKAS E, FARRELL A T, WANG Y C, et al. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension[J]. Oncologist, 2005, 10(3): 176-182. doi:10.1634/theoncologist.10-3-176
doi: 10.1634/theoncologist.10-3-176 |
| [29] |
IONESCU-TUCKER A, COTMAN C W. Emerging roles of oxidative stress in brain aging and Alzheimer's disease[J]. Neurobiol Aging, 2021, 107: 86-95. doi:10.1016/j.neurobiolaging.2021.07.014
doi: 10.1016/j.neurobiolaging.2021.07.014 |
| [30] |
JUNG Y D, PARK S K, KANG D, et al. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells[J]. Redox Biol, 2020, 37: 101716. doi:10.1016/j.redox.2020.101716
doi: 10.1016/j.redox.2020.101716 |
| [31] |
MIR H A, ALI R, MUSHTAQ U, et al. Structure-functional implications of longevity protein p66Shc in health and disease[J]. Ageing Res Rev, 2020, 63: 101139. doi:10.1016/j.arr.2020.101139
doi: 10.1016/j.arr.2020.101139 |
| [32] |
HASLEM L, HAYS J M, HAYS F A. p66Shc in cardiovascular pathology[J]. Cells, 2022, 11(11): 1855. doi:10.3390/cells11111855
doi: 10.3390/cells11111855 |
| [33] |
XIAO Y, XIA J, CHENG J, et al. Inhibition of S-Adenosy-lhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-Mediated oxidative stress pathway[J]. Circulation, 2019, 139(19): 2260-2277. doi:10.1161/circulationaha.118.036336
doi: 10.1161/circulationaha.118.036336 |
| [34] | 张园青, 林珏, 黄莉. 维生素D对阿尔茨海默病细胞模型中DNA甲基化作用研究[J]. 神经药理学报, 2024, 14(6): 39-44. |
| [35] | HENEKA M T, VAN DER FLIER W M, JESSEN F, et al. Neuroinflammation in Alzheimer disease[J]. Nat Rev Immunol, 2025, 25(5): 321-352. |
| [36] |
KONG X, GONG Z, ZHANG L, et al. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation[J]. Brain Behav Immun, 2019, 79: 159-173. doi:10.1016/j.bbi.2019.01.027
doi: 10.1016/j.bbi.2019.01.027 |
| [37] |
SUBEDI L, LEE S E, MADIHA S, et al. Phytochemicals against TNFα-Mediated neuroinflammatory diseases[J]. Int J Mol Sci, 2020, 21(3): 764. doi:10.3390/ijms21030764
doi: 10.3390/ijms21030764 |
| [38] |
OKA S, LEON J, SAKUMI K, et al. MTH1 and OGG1 maintain a low level of 8-oxoguanine in Alzheimer's brain, and prevent the progression of Alzheimer's pathogenesis[J]. Sci Rep, 2021, 11(1): 5819. doi:10.1038/s41598-021-84640-9
doi: 10.1038/s41598-021-84640-9 |
| [39] |
HAHM J Y, PARK J, JANG E S, et al. 8-Oxoguanine: From oxidative damage to epigenetic and epitranscriptional modification[J]. Exp Mol Med, 2022, 54(10): 1626-1642. doi:10.1038/s12276-022-00822-z
doi: 10.1038/s12276-022-00822-z |
| [40] |
IIDA T, FURUTA A, NISHIOKA K, et al. Expression of 8-oxoguanine DNA glycosylase is reduced and associated with neurofibrillary tangles in Alzheimer's disease brain[J]. Acta Neuropathol, 2002, 103(1): 20-25. doi:10.1007/s004010100418
doi: 10.1007/s004010100418 |
| [41] |
SONG Y, ZHU X Y, ZHANG X M, et al. Targeted mitochondrial epigenetics: A new direction in Alzheimer's disease treatment[J]. Int J Mol Sci, 2022, 23(17): 9703. doi:10.3390/ijms23179703
doi: 10.3390/ijms23179703 |
| [42] |
MCMINIMY R, MANFORD A G, GEE C L, et al. Reactive oxygen species control protein degradation at the mitochondrial import gate[J]. Mol Cell, 2024, 84(23): 4612-4628. doi:10.1016/j.molcel.2024.11.004
doi: 10.1016/j.molcel.2024.11.004 |
| [43] |
BRUNETTI D, TORSVIK J, DALLABONA C, et al. Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration[J]. EMBO Mol Med, 2016, 8(3): 176-190. doi:10.15252/emmm.201505894
doi: 10.15252/emmm.201505894 |
| [44] |
TONG T, ZHU C, FARRELL J J, et al. Blood-derived mitochondrial DNA copy number is associated with Alzheimer disease, Alzheimer-related biomarkers and serum metabolites[J]. Alzheimers Res Ther, 2024, 16(1): 234. doi:10.1186/s13195-024-01601-w
doi: 10.1186/s13195-024-01601-w |
| [45] |
ZHANG Y R, WU B S, CHEN S D, et al. Whole exome sequencing analyses identified novel genes for Alzheimer's disease and related dementia[J]. Alzheimers Dement, 2024, 20(10): 7062-7078. doi:10.1002/alz.14181
doi: 10.1002/alz.14181 |
| [46] |
COCHRAN J N, GEIER E G, BONHAM L W, et al. Non-coding and Loss-of-Function coding variants in TET2 are associated with multiple neurodegenerative diseases[J]. Am J Hum Genet, 2020, 106(5): 632-645. doi:10.1016/j.ajhg.2020.03.010
doi: 10.1016/j.ajhg.2020.03.010 |
| [47] |
XU X, PANG Y, FAN X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances[J]. Signal Transduct Target Ther, 2025, 10(1): 190. doi:10.1038/s41392-025-02253-4
doi: 10.1038/s41392-025-02253-4 |
| [48] |
BALASUBRAMANIAN N, SAGARKAR S, CHOUDHARY A G, et al. Epigenetic blockade of hippocampal SOD2 via DNMT3b-Mediated DNA methylation: Implications in mild traumatic brain Injury-Induced persistent oxidative damage[J]. Mol Neurobiol, 2021, 58(3): 1162-1184. doi:10.1007/s12035-020-02166-z
doi: 10.1007/s12035-020-02166-z |
| [49] |
ZHANG W W, FENG C, JIANG H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy[J]. Ageing Res Rev, 2021, 65: 101207. doi:10.1016/j.arr.2020.101207
doi: 10.1016/j.arr.2020.101207 |
| [50] |
CAO H M, WANG L, CHEN B B, et al. DNA demethylation upregulated Nrf2 expression in Alzheimer's disease cellular model[J]. Front Aging Neurosci, 2016, 7: 244. doi:10.3389/fnagi.2015.00244
doi: 10.3389/fnagi.2015.00244 |
| [51] |
ZHANG M, HUO D S, CAI Z P, et al. The effect of schizandrol A-Induced DNA methylation on SH-SY5YAB 1-40 altered neuronal cell line: A potential use in Alzheimer's disease[J]. J Toxicol Environ Health A, 2015, 78(21-22): 1321-1327. doi:10.1080/15287394.2015.1085942
doi: 10.1080/15287394.2015.1085942 |
| [1] | Jinshan YANG,Benzhong JIA,Siwen ZHONG,Tao LI,Dengbao. LI. Effect of lactobacillus plantarum LB12 on renal calcium oxalate stones in rats [J]. The Journal of Practical Medicine, 2025, 41(8): 1130-1138. |
| [2] | Lu ZHENG,Haohao ZHANG,Feifei WU,Jiaqi GUO,Youqin WANG,Ruimin HAO,Lihui FENG,Yan. LI. Protective effect of exenatide on oxidative stress in hypothalamus of diabetes mice and its mechanism [J]. The Journal of Practical Medicine, 2025, 41(3): 330-338. |
| [3] | Xingwei WU,Jianying WANG,Chengxiao GUO,Ziyi LIU,Chao SUN,Fei. YU. The effect of remimazolam on modulating the ROS/RAGE/NF-κB signaling pathway in LPS-induced microglial inflammation [J]. The Journal of Practical Medicine, 2025, 41(2): 153-161. |
| [4] | Jinyan GUO,Yuqing YOU,Ke CHEN,Fen PAN,Jiahui LAI,Sufang CHEN,Weifeng. YAO. Protective mechanism of sevoflurane on acute lung injury in sepsis by regulating the Wnt/β-catenin signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(19): 2991-2999. |
| [5] | Wenli YANG,Tong BAO,Xin LIN,Ruge NIU,Zhongchi XU,Yunhe ZHAO. Prevention and treatment of acute radiation⁃induced myocardial injury by the preparation of Abelmoschus manihot (L.) Medik (Jiahua Tablet) [J]. The Journal of Practical Medicine, 2025, 41(17): 2631-2636. |
| [6] | Yuejing ZHAO,Zelin CHEN,Wu ZHANG. Effect of closed negative pressure drainage combined with Ilizarov transverse tibial bone displacement on the clinical efficacy and complications of severe diabetic foot [J]. The Journal of Practical Medicine, 2025, 41(13): 2052-2057. |
| [7] | Lihong WU,Yan GUO,Jing CAO,Xiaoyan DU,Qingqing LIANG,Xiaocheng GAO,Yanru WANG,Yang DENG,Long GAO. Mechanism of neodymium oxide exposure causing brain tissue damage in mouse [J]. The Journal of Practical Medicine, 2025, 41(1): 30-34. |
| [8] | Kanglin CAI,Jinkai ZHANG,Liangdi RAN,Dajun HU,Zhitao FENG,Huilian. HUANG. Research progress on antidepressant pharmacological effects and mechanisms of Bupleuri Radix⁃Paeoniae Radix Alba herb⁃pair [J]. The Journal of Practical Medicine, 2024, 40(4): 447-452. |
| [9] | Peng SUN,Zhaojin JIA,Xiuhua LI,Xiaowei CHEN,Runsheng WEI,Yantao JIN,Jiantao. JIN. The effects of different extracorporeal circulation temperature combined with dexmedetomidine on oxidative stress in patients undergoing cardiac surgery under cardiopulmonary bypass [J]. The Journal of Practical Medicine, 2024, 40(24): 3521-3526. |
| [10] | Tianyue YU,Qian GUO,Hao HU,Yujing SU,Jianhua CHEN. Advances in oxidative stress⁃related pathways with diagnostic and predictive value in schizophrenia [J]. The Journal of Practical Medicine, 2024, 40(20): 2935-2940. |
| [11] | Jieqiong LIU,Yali YAO,Qian SUI,Ke LI,Fang HUANG,Yongqing. CAO. Based on the novel anti-heart failure drug ARNI, the mechanism of prevention of cardiotoxicity caused by anthracycline antitumor drugs was discussed [J]. The Journal of Practical Medicine, 2024, 40(2): 188-194. |
| [12] | Ganggang LU,Shenglong LI,Yongqiang ZHAO,Yunpeng JIA,Yonglin LIANG,Yuanbo. ZHAO. Research progress on the correlation between oxidative stress and ferroptosis in diabetic impotence [J]. The Journal of Practical Medicine, 2024, 40(16): 2229-2235. |
| [13] | Yunlong SUN,Zhe MENG,Xijia WANG,Lu. GAO. Liraglutide ameliorates high glucose⁃induced endothelial cell injuryvia Nrf2 [J]. The Journal of Practical Medicine, 2024, 40(15): 2051-2055. |
| [14] | Chun LONG,Hongying BI,Changzhen YANG,Jiakai WANG,Yan TANG,Xu. LIU. Emodin upregulates the Sirt2 to attenuate LPS-induced oxidative stress response in RAW264.7 cells [J]. The Journal of Practical Medicine, 2024, 40(13): 1785-1790. |
| [15] | Ruyue XUE,Yuexian LI,Defeng. SUN. Research progress on stellate ganglion block improving postoperative cognitive dysfunction [J]. The Journal of Practical Medicine, 2024, 40(11): 1500-1504. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

