The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (9): 1413-1424.doi: 10.3969/j.issn.1006-5725.2025.09.021
• Reviews • Previous Articles
Yingmei HAN1,Yijie LI1,Heng ZHANG1,Weiqing LI1,Ze FENG1,Feng WANG2()
Received:
2024-12-27
Online:
2025-05-10
Published:
2025-05-20
Contact:
Feng WANG
E-mail:wfzmy123@163.com
CLC Number:
Yingmei HAN,Yijie LI,Heng ZHANG,Weiqing LI,Ze FENG,Feng WANG. The application value of deep learning in imaging studies for predicting the conversion of Alzheimer′s disease[J]. The Journal of Practical Medicine, 2025, 41(9): 1413-1424.
Tab.1
Research on the fusion model based on Convolutional Neural Network(CNN)"
融合模型 | 数据集 | 样本 | 结果 | 图像 | 可解释性 | ||
---|---|---|---|---|---|---|---|
AD | MCI | HC | |||||
CNN-CNN[ | ADNI | 171 | 545 | 580 | 三元多类(AD、MCI、HC)准确率99.43%;四元多类(AD、HC、LMCI、EMCI)准确率99.57%;五元多类(AD、HC、LMCI、EMCI、MCI)准确率99.13% | MRI | 有 |
CNN-MLP[ | ADNI | - | - | - | AD-MCI、AD-HC、MCI-HC分类准确率分别为72.5%、85%、75% | MRI | - |
CNN-LSTM[ | - | - | - | - | 模型分类准确率高达98.5% | MRI | 有 |
FMCNN(CNN-FCN)[ | - | - | - | - | 依据DTI图像WM特性准确诊断AD和MCI(准确率高达96.95%),除却分类诊断功能,还可基于确定性纤维追踪生成的光纤概率图来评估AD和MCI风险状态 | DTI | - |
CNN(ResNet、Xception和InceptionV3)-TL[ | ADNI、OASIS、AIBL | 94、15、15 | 126、0、30 | 85、15、15 | 分类任务的准确率均在90%以上,但是InceptionV3-TL模型分类性能表现最优 | MRI | 有 |
CNN-TL[ | 意大利摩德纳大学医院、牛津磁共振中心 | 12 | 61 | - | 该模型对于DL-TL临床应用的广泛开展具有重要意义,提高海马体积的精度测量,验证MCI阶段小海马异常的结论 | MRI | 有 |
CNN-TL(ResNet50)[ | ADNI | 1 406 | - | 2 084 | 该模型的分类准确率82.4%,预测值与临床评分存在相关性,可预测个体未来认知能力下降状态 | sMRI、临床评分 | |
A3C-TL-GTO[ | ADNI、AD数据集 | 17 976 | 138 105 | 70 076 | 该模型对ADNI数据集疾病分类的准确率达96.25%;AD数据集分类准确率96.65% | MRI |
Tab.2
Research on innovative models based on Generative Adversarial Network(GAN)"
创新模型 | 数据集 | 样本 | 结果 | 影像 | 文献 | ||
---|---|---|---|---|---|---|---|
AD | MCI | HC | |||||
DeepCGAN | ADNI | 3 370 | - | 1 643 | 准确率97.3%;AUC99.51% | - | [ |
DeepCGAN | ADNI | 30 | 64 | 42 | 准确率72%;AD的PSNR82分;SSIM25.6分 | PET | [ |
3D-DCGAN | ADNI | 187 | 382 | 229 | 准确率:AD-HC 92.8%、AD-MCI78.1%、MCI-HC76.4%,解决掉过拟合问题 | sMRI | [ |
ATAT | ADNI | - | 162 | 86 | ATAT模型为脑功能网络提供新视角,可评估不同阶段与疾病相关的影像特征 | fMRI | [ |
HSIA-GAN | ADNI | 233 | 400 | 阶段诊断率74.2%;风险预测84.5% | sMRI/fMRI/DTI | [ | |
注意力引导的GAN | ADNI、AIBL、OASIS | 329、628、47 | - | 687、0、188 | 准确率84.79% | 3D-MRI | [ |
GANCMLAE | ADNI | 292 | 309 | 712 | SSIM、PSNR以及MSE指标具有较好性能,AD-HC和MCI-HC的ROC分别是86.7%和75.2% | sMRI | [ |
3D-cGAN、LM3IL | ADNI | 358 | 670 | 429 | 在AD诊断方面优于最先进的方法 | PET/MRI | [ |
多尺度多类型特征生成对抗性深度神经网络 | ADNI、NIFD | 459 | - | 1 063 | 准确率88.28% | sMRI | [ |
Tab.3
Research on the fusion model based onVision Transformer(ViT)"
模型 | 数据集 | 样本 | 结果 | 影像 | 文献 |
---|---|---|---|---|---|
Hybrid-ViT (ResNet-50和ViT) | OASIS | AD有64例,HC有86例 | 在训练期间准确率97%,验证数据集准确率94%,该模型优于先进模型(如ViT模型) | MRI | [ |
SSL-ViT-DINO-ELM | ADNI | MCI共469例 | 该模型准确率92.31%,特异度90.21%,敏感度95.50%。融合SSL、DINO、ELM以及注意力机制,使该模型更具有预测性和可解释性 | PET | [ |
MC-ViT | ADNI、OASIS-3 | ADNI数据集共7 199例,OASIS-3共1 992例 | 该模型克服了3D补丁卷积神经网络的局限性,通过最低成本,对AD分类准确率90%,超过2D和3DCNN模型 | MRI | [ |
ViT-集成技术 | ADNI、OASIS | ADNI共1 056,其中AD223,MCI737,HC96;OASIS共6 400,非痴呆3 200,非常轻度痴呆症2 240,轻度痴呆症896,中度痴呆症64 | ViT-集成技术分类准确性86%,成为CNN等传统模型的替代方案,通过多头注意力机制,在多个数据集中表现出较高的分类精度,模型具有可解释性。 | MRI | [ |
ViT-CsAGP | ADNI | - | 该模型的AD-HC、AD-MCI、HC-MCI、AD-HC-MCI的分类准确率分别受99.04%、97.43%、98.57%、98.72%。通过土池算法Reshape-Pooling-Reshape (RPR)减少模型的令牌冗余 | PET/MRI | [ |
3D-ViTs-DBN | ADNI | AD有117例,MCI有247例,HC有168例 | 模型与基于感兴趣区的分析方法提取特定大脑区域特征,并用DBN模型进行预测。该模型的准确性、可解释性以及分类性能均表现良好 | MRI | [ |
VECNN | ADNI | ADNI数据集中共2248张3DMRI图像 | 该模型在区分AD、MCI、HC的准确率达92.14%,敏感度93.27%,特异度89.95% | 3DMRI | [ |
Tab.4
Research on the fusion model based on Multilayer perceptron(MLP)"
模型 | 数据集 | 样本 | 结果 | 数据 | 可解释性 |
---|---|---|---|---|---|
MLP-RNN(LSTM)[ | ADNI | AD200; MCI400; HC200 | 该模型可作为预测AD进展的有效工具。在预测评估受试者未来2年认知状态正常准确率为84.62%,未来2年认知状态异常准确率78.9%;未来4年认知状态正常准确率为83.33%,未来4年认知状态异常准确率为82.8% | 临床评分 | 有 |
MLP-GNN[ | ADNI | 1092 | 该模型分类性能准确率90.18%,还可以根据MRI图像衍生出FDG-PET图像并进行分析 | MRI、PET | 进行10倍交叉验证,具有可解释性 |
MLP-CNN[ | ADNI | - | AD诊断准确率98.61%,MCI-AD预测准确率高达84.49%。可准确诊断AD并预测MCI转化 | MRI | 有 |
MLP-CNN[ | ADNI | - | 该模型对AD-MCI和MCI-HC的分类准确率分别是93%和82.4% | MRI、临床数据以及APOE遗传数据 | 引入双注意力机制,增加模型可解释性 |
MLP-AlexNet[ | ADNI、 OASIS、 EEG | - | 在EEG数据集,该模型分类准确率97.71%;在ADNI数据集,该模型分类准确率92.59% | MRI、临床数据 | 具有可解释性 |
MLP-AD_Net(阿尔茨海默病 定向预测3D卷积模型)[ | ADNI | - | 该模型的准确率89%,预测性能良好且稳定 | MRI、临床数据 | 引入注意力机制,模型具有可解释性 |
MLP-FCN[ | ADNI | AD307、 HC243 | 注意力机制、FCN和MLP的融合应用可获取精确的疾病概率图特征信息,提升模型的分类性能 | 3D-MRI | 引入注意力机制,模型具有可解释性 |
1 |
CHU C S, WANG D Y, LIANG C K, et al. Automated Video Analysis of Audio-Visual Approaches to Predict and Detect Mild Cognitive Impairment and Dementia in Older Adults[J]. J Alzheimers Dis, 2023, 92(3): 875-886. doi:10.3233/jad-220999
doi: 10.3233/jad-220999 |
2 | YIN C, IMMS P, CHENG M, et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment[J]. Proc Natl Acad Sci U S A, 2023, 120(2): e2214634120. |
3 |
KAM T E, ZHANG H, JIAO Z, et al. Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 478-487. doi:10.1109/tmi.2019.2928790
doi: 10.1109/tmi.2019.2928790 |
4 |
MORA-RUBIO A, BRAVO-ORTIZ M A, QUINONES ARREDONDO S, et al. Classification of Alzheimer's disease stages from magnetic resonance images using deep learning[J]. PeerJ Comput Sci, 2023, 9: e1490. doi:10.7717/peerj-cs.1490
doi: 10.7717/peerj-cs.1490 |
5 |
郭润财, 王蕾, 黄振国, 等. 基于从头训练模式深度学习卷积神经网络模型评估急性肺栓塞的价值[J]. 实用医学杂志, 2023, 39(22): 2979-2983. doi:10.3969/j.issn.1006-5725.2023.22.021
doi: 10.3969/j.issn.1006-5725.2023.22.021 |
6 |
李欣雨, 吴洋, 张红梅, 等. 深度学习技术在超声心动图图像质量控制中的应用[J]. 实用医学杂志, 2024, 40(1): 108-113. doi:10.3969/j.issn.1006-5725.2024.01.019
doi: 10.3969/j.issn.1006-5725.2024.01.019 |
7 |
谭立玮, 张淑军, 韩琪, 等. 面向医学影像报告生成的门归一化编解码网络[J]. 智能系统学报, 2024, 19(2): 411-419. doi:10.11992/tis.202207013
doi: 10.11992/tis.202207013 |
8 | 韩英妹, 李一杰, 张衡, 等. 基于MRI分析阿尔茨海默病大尺度脑网络研究进展[J]. 实用医学杂志, 2024, 40(4): 575-579. |
9 |
曾安, 贾龙飞, 潘丹, 等. 基于卷积神经网络和集成学习的阿尔茨海默症早期诊断[J]. 生物医学工程学杂志, 2019, 36(5): 711-719. doi:10.7507/1001-5515.201809040
doi: 10.7507/1001-5515.201809040 |
10 |
OLAIMAT M AL, MARTINEZ J, SAEED F, et al. PPAD: a deep learning architecture to predict progression of Alzheimer's disease[J]. Bioinformatics, 2023, 39(39 ): i149-i157. doi:10.1093/bioinformatics/btad249
doi: 10.1093/bioinformatics/btad249 |
11 |
GKENIOS G, LATSIOU K, DIAMANTARAS K, et al. Diagnosis of Alzheimer's disease and Mild Cognitive Impairment using EEG and Recurrent Neural Networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 3179-3182. doi:10.1109/embc48229.2022.9871302
doi: 10.1109/embc48229.2022.9871302 |
12 |
ALESSANDRINI M, BIAGETTI G, CRIPPA P, et al. EEG-Based Alzheimer's Disease Recognition Using Robust-PCA and LSTM Recurrent Neural Network[J]. Sensors (Basel), 2022, 22(10):3696. doi:10.3390/s22103696
doi: 10.3390/s22103696 |
13 |
NARASIMHAN R, GOPALAN M, SIKKANDAR M Y, et al. Employing Deep-Learning Approach for the Early Detection of Mild Cognitive Impairment Transitions through the Analysis of Digital Biomarkers[J]. Sensors (Basel), 2023, 23(21):8867. doi:10.3390/s23218867
doi: 10.3390/s23218867 |
14 |
AQEEL A, HASSAN A, KHAN M A, et al. A Long Short-Term Memory Biomarker-Based Prediction Framework for Alzheimer's Disease[J]. Sensors (Basel), 2022, 22(4):1475. doi:10.3390/s22041475
doi: 10.3390/s22041475 |
15 |
FARHATULLAH, CHEN X, ZENG D, et al. A deep learning approach for non-invasive Alzheimer's monitoring using microwave radar data[J]. Neural Netw, 2024, 181: 106778. doi:10.1016/j.neunet.2024.106778
doi: 10.1016/j.neunet.2024.106778 |
16 |
QIU S, JOSHI P S, MILLER M I, et al. Development and validation of an interpretable deep learning framework for Alzheimer's disease classification[J]. Brain, 2020, 143(6): 1920-1933. doi:10.1093/brain/awaa137
doi: 10.1093/brain/awaa137 |
17 |
AHMED G, ER M J, FAREED M M S, et al. DAD-Net: Classification of Alzheimer's Disease Using ADASYN Oversampling Technique and Optimized Neural Network[J]. Molecules, 2022, 27(20):7085. doi:10.3390/molecules27207085
doi: 10.3390/molecules27207085 |
18 |
WANG B, LIM J S. Zoom-In Neural Network Deep-Learning Model for Alzheimer's Disease Assessments[J]. Sensors (Basel), 2022, 22(22):8887. doi:10.3390/s22228887
doi: 10.3390/s22228887 |
19 |
YAN H, MUBONANYIKUZO V, KOMOLAFE T E, et al. Hybrid-RViT: Hybridizing ResNet-50 and Vision Transformer for Enhanced Alzheimer's disease detection[J]. PLoS One, 2025, 20(2): e0318998. doi:10.1371/journal.pone.0318998
doi: 10.1371/journal.pone.0318998 |
20 |
ALP S, AKAN T, BHUIYAN M S, et al. Joint transformer architecture in brain 3D MRI classification: its application in Alzheimer's disease classification[J]. Sci Rep, 2024, 14(1): 8996. doi:10.1038/s41598-024-59578-3
doi: 10.1038/s41598-024-59578-3 |
21 |
QU C, ZOU Y, MA Y, et al. Diagnostic Performance of Generative Adversarial Network-Based Deep Learning Methods for Alzheimer's Disease: A Systematic Review and Meta-Analysis[J]. Front Aging Neurosci, 2022, 14: 841696. doi:10.3389/fnagi.2022.841696
doi: 10.3389/fnagi.2022.841696 |
22 |
QIU S, MILLER M I, JOSHI P S, et al. Multimodal deep learning for Alzheimer's disease dementia assessment[J]. Nat Commun, 2022, 13(1): 3404. doi:10.1038/s41467-022-31037-5
doi: 10.1038/s41467-022-31037-5 |
23 |
LOGAN R, WILLIAMS B G, FERREIRA DA SILVA M, et al. Deep Convolutional Neural Networks With Ensemble Learning and Generative Adversarial Networks for Alzheimer's Disease Image Data Classification[J]. Front Aging Neurosci, 2021, 13: 720226. doi:10.3389/fnagi.2021.720226
doi: 10.3389/fnagi.2021.720226 |
24 |
CHEN X, TANG M, LIU A, et al. Diagnostic accuracy study of automated stratification of Alzheimer's disease and mild cognitive impairment via deep learning based on MRI[J]. Ann Transl Med, 2022, 10(14): 765. doi:10.21037/atm-22-2961
doi: 10.21037/atm-22-2961 |
25 |
KANG L, JIANG J, HUANG J, et al. Identifying Early Mild Cognitive Impairment by Multi-Modality MRI-Based Deep Learning[J]. Front Aging Neurosci, 2020, 12: 206. doi:10.3389/fnagi.2020.00206
doi: 10.3389/fnagi.2020.00206 |
26 |
JIANG J, KANG L, HUANG J, et al. Deep learning based mild cognitive impairment diagnosis using structure MR images[J]. Neurosci Lett, 2020, 730: 134971. doi:10.1016/j.neulet.2020.134971
doi: 10.1016/j.neulet.2020.134971 |
27 |
EL-ASSY A M, AMER H M, IBRAHIM H M, et al. A novel CNN architecture for accurate early detection and classification of Alzheimer's disease using MRI data[J]. Sci Rep, 2024, 14(1): 3463. doi:10.1038/s41598-024-53733-6
doi: 10.1038/s41598-024-53733-6 |
28 |
SO J H, MADUSANKA N, CHOI H K, et al. Deep Learning for Alzheimer's Disease Classification using Texture Features[J]. Curr Med Imaging Rev, 2019, 15(7): 689-698. doi:10.2174/1573405615666190404163233
doi: 10.2174/1573405615666190404163233 |
29 |
BALAJI P, CHAURASIA M A, BILFAQIH S M, et al. Hybridized Deep Learning Approach for Detecting Alzheimer's Disease[J]. Biomedicines, 2023, 11(1):149. doi:10.3390/biomedicines11010149
doi: 10.3390/biomedicines11010149 |
30 |
DENG L, WANG Y, Alzheimer's Disease Neuroimaging I. Fully Connected Multi-Kernel Convolutional Neural Network Based on Alzheimer's Disease Diagnosis[J]. J Alzheimers Dis, 2023, 92(1): 209-228. doi:10.3233/jad-220519
doi: 10.3233/jad-220519 |
31 |
GHAFFARI H, TAVAKOLI H, PIRZAD JAHROMI G. Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI[J]. Br J Radiol, 2022, 95(1136): 20211253. doi:10.1259/bjr.20211253
doi: 10.1259/bjr.20211253 |
32 |
BALBONI E, NOCETTI L, CARBONE C, et al. The impact of transfer learning on 3D deep learning convolutional neural network segmentation of the hippocampus in mild cognitive impairment and Alzheimer disease subjects[J]. Hum Brain Mapp, 2022, 43(11): 3427-3438. doi:10.1002/hbm.25858
doi: 10.1002/hbm.25858 |
33 |
BAE J, STOCKS J, HEYWOOD A, et al. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer's type based on a three-dimensional convolutional neural network[J]. Neurobiol Aging, 2021, 99: 53-64. doi:10.1016/j.neurobiolaging.2020.12.005
doi: 10.1016/j.neurobiolaging.2020.12.005 |
34 |
BAGHDADI N A, MALKI A, BALAHA H M, et al. A(3)C-TL-GTO: Alzheimer Automatic Accurate Classification Using Transfer Learning and Artificial Gorilla Troops Optimizer[J]. Sensors (Basel), 2022, 22(11):4250. doi:10.3390/s22114250
doi: 10.3390/s22114250 |
35 |
JIN L, ZHAO K, ZHAO Y, et al. A Hybrid Deep Learning Method for Early and Late Mild Cognitive Impairment Diagnosis With Incomplete Multimodal Data[J]. Front Neuroinform, 2022, 16: 843566. doi:10.3389/fninf.2022.843566
doi: 10.3389/fninf.2022.843566 |
36 |
ALI I, SALEEM N, ALHUSSEIN M, et al. DeepCGAN: early Alzheimer's detection with deep convolutional generative adversarial networks[J]. Front Med (Lausanne), 2024, 11: 1443151. doi:10.3389/fmed.2024.1443151
doi: 10.3389/fmed.2024.1443151 |
37 |
SAJJAD M, RAMZAN F, KHAN M U G, et al. Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation[J]. Microsc Res Tech, 2021, 84(12): 3023-3034. doi:10.1002/jemt.23861
doi: 10.1002/jemt.23861 |
38 |
KANG W, LIN L, SUN S, et al. Three-round learning strategy based on 3D deep convolutional GANs for Alzheimer's disease staging[J]. Sci Rep, 2023, 13(1): 5750. doi:10.1038/s41598-023-33055-9
doi: 10.1038/s41598-023-33055-9 |
39 |
ZUO Q, LU L, WANG L, et al. Constructing brain functional network by Adversarial Temporal-Spatial Aligned Transformer for early AD analysis[J]. Front Neurosci, 2022, 16: 1087176. doi:10.3389/fnins.2022.1087176
doi: 10.3389/fnins.2022.1087176 |
40 |
BI X A, WANG Y, LUO S, et al. Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer's Disease With Imaging Genetic Data[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(6): 7420-7434. doi:10.1109/tnnls.2022.3212700
doi: 10.1109/tnnls.2022.3212700 |
41 |
SINHA S, THOMOPOULOS S I, LAM P, et al. Alzheimer's Disease Classification Accuracy is Improved by MRI Harmonization based on Attention-Guided Generative Adversarial Networks[J]. Proc SPIE Int Soc Opt Eng, 2021, 12088. doi:10.1117/12.2606155
doi: 10.1117/12.2606155 |
42 |
SHI R, SHENG C, JIN S, et al. Generative adversarial network constrained multiple loss autoencoder: A deep learning-based individual atrophy detection for Alzheimer's disease and mild cognitive impairment[J]. Hum Brain Mapp, 2023, 44(3): 1129-1146. doi:10.1002/hbm.26146
doi: 10.1002/hbm.26146 |
43 |
PAN Y, LIU M, LIAN C, et al. Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer's Disease Diagnosis[J]. Med Image Comput Comput Assist Interv, 2018, 11072: 455-463. doi:10.1007/978-3-030-00931-1_52
doi: 10.1007/978-3-030-00931-1_52 |
44 |
MA D, LU D, POPURI K, et al. Differential Diagnosis of Frontotemporal Dementia, Alzheimer's Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images[J]. Front Neurosci, 2020, 14: 853. doi:10.3389/fnins.2020.00853
doi: 10.3389/fnins.2020.00853 |
45 |
HOANG G M, KIM U H, KIM J G. Vision transformers for the prediction of mild cognitive impairment to Alzheimer's disease progression using mid-sagittal sMRI[J]. Front Aging Neurosci, 2023, 15: 1102869. doi:10.3389/fnagi.2023.1102869
doi: 10.3389/fnagi.2023.1102869 |
46 |
KHATRI U, KWON G R. Explainable Vision Transformer with Self-Supervised Learning to Predict Alzheimer's Disease Progression Using 18F-FDG PET[J]. Bioengineering (Basel), 2023, 10(10). doi:10.3390/bioengineering10101225
doi: 10.3390/bioengineering10101225 |
47 |
HUANG F, QIU A. Ensemble Vision Transformer for Dementia Diagnosis[J]. IEEE J Biomed Health Inform, 2024, 28(9): 5551-5561. doi:10.1109/jbhi.2024.3412812
doi: 10.1109/jbhi.2024.3412812 |
48 |
SHAFFI N, VISWAN V, MAHMUD M. Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification[J]. Brain Inform, 2024, 11(1): 25. doi:10.1186/s40708-024-00238-7
doi: 10.1186/s40708-024-00238-7 |
49 |
TANG C, WEI M, SUN J, et al. CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling[J]. J King Saud Univ Comput Inf Sci, 2023, 35(7): 101618. doi:10.1016/j.jksuci.2023.101618
doi: 10.1016/j.jksuci.2023.101618 |
50 |
SAOUD L S, ALMARZOUQI H. Explainable early detection of Alzheimer's disease using ROIs and an ensemble of 138 3D vision transformers[J]. Sci Rep, 2024, 14(1): 27756. doi:10.1038/s41598-024-76313-0
doi: 10.1038/s41598-024-76313-0 |
51 |
ZHAO Z, YEOH P S Q, ZUO X, et al. Vision transformer-equipped Convolutional Neural Networks for automated Alzheimer's disease diagnosis using 3D MRI scans[J]. Front Neurol, 2024, 15: 1490829. doi:10.3389/fneur.2024.1490829
doi: 10.3389/fneur.2024.1490829 |
52 |
HONG X, HUANG K, LIN J, et al. Combined Multi-Atlas and Multi-Layer Perception for Alzheimer's Disease Classification[J]. Front Aging Neurosci, 2022, 14: 891433. doi:10.3389/fnagi.2022.891433
doi: 10.3389/fnagi.2022.891433 |
53 |
ALMUBARK I, CHANG L C, SHATTUCK K F, et al. A 5-min Cognitive Task With Deep Learning Accurately Detects Early Alzheimer's Disease[J]. Front Aging Neurosci, 2020, 12: 603179. doi:10.3389/fnagi.2020.603179
doi: 10.3389/fnagi.2020.603179 |
54 |
MUKHERJI D, MUKHERJI M, MUKHERJI N, et al. Early detection of Alzheimer's disease using neuropsychological tests: a predict-diagnose approach using neural networks[J]. Brain Inform, 2022, 9(1): 23. doi:10.1186/s40708-022-00169-1
doi: 10.1186/s40708-022-00169-1 |
55 |
CHEN K, WENG Y, HOSSEINI A A, et al. A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer's Disease involving data synthesis[J]. Neural Netw, 2024, 169: 442-452. doi:10.1016/j.neunet.2023.10.040
doi: 10.1016/j.neunet.2023.10.040 |
56 |
LI M, JIANG Y, LI X, et al. Ensemble of convolutional neural networks and multilayer perceptron for the diagnosis of mild cognitive impairment and Alzheimer's disease[J]. Med Phys, 2023, 50(1): 209-225. doi:10.1002/mp.15985
doi: 10.1002/mp.15985 |
57 |
QIANG Y R, ZHANG S W, LI J N, et al. Diagnosis of Alzheimer's disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data[J]. Artif Intell Med, 2023, 145: 102678. doi:10.1016/j.artmed.2023.102678
doi: 10.1016/j.artmed.2023.102678 |
58 |
FARHATULLAH, CHEN X, ZENG D, et al. 3-Way hybrid analysis using clinical and magnetic resonance imaging for early diagnosis of Alzheimer's disease[J]. Brain Res, 2024, 1840: 149021. doi:10.1016/j.brainres.2024.149021
doi: 10.1016/j.brainres.2024.149021 |
59 |
YAO M, LIU J, PU Y, et al. Multi-class Prediction of Cognitively Normal / Mild Cognitive Impairment / Alzheimer's Disease Status in Dementia Based on Convolutional Neural Networks with Attention Mechanism[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2024, 2024: 1-7. doi:10.1109/embc53108.2024.10781557
doi: 10.1109/embc53108.2024.10781557 |
60 | 颜彬. 基于注意力机制与全卷积网络的阿尔茨海默病分类方法研究[D]. 杭州:浙江理工大学,2023. |
[1] | Li TANG,Yurong GONG,Liye ZENG,Yanfang GAO,Chengzhe. DENG. Application value of 3.0T magnetic resonance imaging T2 mapping sequence combined with serum nesfatin⁃1 level detection in the diagnosis of elderly knee early osteoarthritis [J]. The Journal of Practical Medicine, 2025, 41(8): 1238-1242. |
[2] | Huiling YE,Zhengchaoyi CHEN,Yihan HUANG,Yingjie ZHANG,Xiangbin ZHANG,Yuehu PU,Renming ZHONG. Radiotherapy treatment comparison of liver SBRT between 4D⁃CT and deep inspiration breath hold troughmagnetic resonance imaging [J]. The Journal of Practical Medicine, 2025, 41(7): 1044-1049. |
[3] | Gaokai HU,Ya'nan NIU,Yukang GONG,Yang HU,Ruixuan XU,Wenshan. GAO. Research progress on the application of deep learning in lumbar spine disease [J]. The Journal of Practical Medicine, 2025, 41(6): 921-928. |
[4] | Zhilong SI,Hao WANG,Fei XIAO. Feasibility of modified LIFT guided by magnetic resonance imaging in the treatment of deep anorectal abscess [J]. The Journal of Practical Medicine, 2025, 41(1): 65-70. |
[5] | Xi HU,Yan LI,Yang. LIU. Recent advances on the application of deep learning in assisted reproductive technology [J]. The Journal of Practical Medicine, 2024, 40(7): 893-897. |
[6] | Yingmei HAN,Yijie LI,Heng ZHANG,Jing LV,Yi ZHANG,Yingbo QIAO,Nan LIN,Huiyong XU,Feng. WANG. Research progress of large-scale brain network of Alzheimer’s disease based on MRI analysis [J]. The Journal of Practical Medicine, 2024, 40(4): 575-579. |
[7] | Yuke SONG,Jinfan XU,Xiaoming HE,Tianye LIN,Mincong HE,Qiushi. WEI. Correlation of high signal intensity of infrapatellar fat pad on symptoms and structure of knee osteoarthritis [J]. The Journal of Practical Medicine, 2024, 40(23): 3373-3378. |
[8] | Huiling YE,Renming. ZHONG. Progress in assessing the treatment accuracy of liver stereotactic body radiotherapy through post-therapeutic magnetic resonance imaging morphologic alterations [J]. The Journal of Practical Medicine, 2024, 40(22): 3119-3123. |
[9] | Cheng CHEN,Xinyang YU,Hua. ZHANG. Advances in imaging diagnosis of placenta accreta spectrum [J]. The Journal of Practical Medicine, 2024, 40(21): 2976-2981. |
[10] | Jiarui ZHAO,Yulai GONG. Effectiveness of resting-state fMRI in the diagnosis of temporal lobe epilepsy-associated cognitive impairment: A review of literature [J]. The Journal of Practical Medicine, 2024, 40(20): 2954-2959. |
[11] | Jia XIANG,Qiantong CHEN,Yingxin LU,Sijie ZHENG,Junjie HUANG,Yingying CHEN,Suidan HUANG,Huai. CHEN. Study on diffuse cystic lung disease based on deep learning [J]. The Journal of Practical Medicine, 2024, 40(19): 2747-2754. |
[12] | Di WANG,Dan LIAO,Yuancheng LIU,Rui XU,Qinghong. DUAN. Analysis of global local consistency changes in first-episode depression with childhood maltreatment based on resting-state magnetic resonance [J]. The Journal of Practical Medicine, 2024, 40(16): 2311-2315. |
[13] | Zhe ZENG,Lin LUO,Qiang CHEN,Siqi HOU,Shengzhe. JIANG. Default mode network analysis associated with memory impairment in acute mild traumatic brain injury [J]. The Journal of Practical Medicine, 2024, 40(10): 1412-1417. |
[14] | Xinyu LI,Yang WU,Hongmei ZHANG,Lixue YIN,Bo PENG,Shenghua. XIE. Deep learning technology for quality control of echocardiography images [J]. The Journal of Practical Medicine, 2024, 40(1): 108-113. |
[15] | LV Xiaoli, CHEN Yilei, TAN Wenli, MIAO Wanhong.. Cerebral cortex activation patterns under different accommodative loads of human eye ciliary muscles [J]. The Journal of Practical Medicine, 2023, 39(6): 706-712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||