| [1] |
SUNG H, FERLAY J, SIEGEL R L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
| [2] |
RAO X, ZHANG C, LUO H, et al. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response[J]. Cells, 2022, 11(18): 2828-2830. doi:10.3390/cells11182828
doi: 10.3390/cells11182828
|
| [3] |
JIN X, LIU Z, YANG D, et al. Recent Progress and Future Perspectives of Immunotherapy in Advanced Gastric Cancer[J]. Front Immunol, 2022, 13: 948647-948650. doi:10.3389/fimmu.2022.948647
doi: 10.3389/fimmu.2022.948647
|
| [4] |
PENG Y, LIU C, LI M, et al. Identification of a prognostic and therapeutic immune signature associated with hepatocellular carcinoma[J]. Cancer Cell Int, 2021, 21(1): 98-100. doi:10.1186/s12935-021-01792-4
doi: 10.1186/s12935-021-01792-4
|
| [5] |
FU T, DAI L J, WU S Y, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response[J]. J Hematol Oncol, 2021, 14(1): 98-101. doi:10.1186/s13045-021-01103-4
doi: 10.1186/s13045-021-01103-4
|
| [6] |
KHALAF K, HANA D, CHOU J T, et al. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance[J]. Front Immunol, 2021, 12: 656364-656367. doi:10.3389/fimmu.2021.656364
doi: 10.3389/fimmu.2021.656364
|
| [7] |
LV B, WANG Y, MA D, et al. Immunotherapy: Reshape the Tumor Immune Microenvironment[J]. Front Immunol, 2022, 13: 844142-844145. doi:10.3389/fimmu.2022.844142
doi: 10.3389/fimmu.2022.844142
|
| [8] |
THOMPSON R, CAO X. Reassessing granzyme B: Unveiling perforin-independent versatility in immune responses and therapeutic potentials[J]. Front Immunol, 2024, 15: 1392535-1392536. doi:10.3389/fimmu.2024.1392535
doi: 10.3389/fimmu.2024.1392535
|
| [9] |
LIANG Z, PAN L, SHI J, et al. C1QA, C1QB, and GZMB are novel prognostic biomarkers of skin cutaneous melanoma relating tumor microenvironment[J]. Sci Rep, 2022, 12(1): 20460-20462. doi:10.1038/s41598-022-24353-9
doi: 10.1038/s41598-022-24353-9
|
| [10] |
OSHIMA T, HASHIMOTO I, HIROSHIMA Y, et al. Clinical Significance of Granzyme B Gene Expression in Pathological Stage Ⅱ/Ⅲ Gastric Cancer After Curative Gastrectomy[J]. Anticancer Res, 2024, 44(10): 4537-4542. doi:10.21873/anticanres.17282
doi: 10.21873/anticanres.17282
|
| [11] |
MIZOGUCHI K, KAWAJI H, KAI M, et al. Granzyme B Expression in the Tumor Microenvironment as a Prognostic Biomarker for Patients with Triple-Negative Breast Cancer[J]. Cancers (Basel), 2023, 15(18): 4456-4457. doi:10.3390/cancers15184456
doi: 10.3390/cancers15184456
|
| [12] |
GAO L, YING F, CAI J, et al. Identification and validation of pyroptosis-related gene landscape in prognosis and immunotherapy of ovarian cancer[J]. J Ovarian Res, 2023, 16(1): 27-29. doi:10.1186/s13048-022-01065-2
doi: 10.1186/s13048-022-01065-2
|
| [13] |
LIM R J, SALEHI-RAD R, TRAN L M, et al. CXCL9/10-engineered dendritic cells promote T cell activation and enhance immune checkpoint blockade for lung cancer[J]. Cell Rep Med, 2024, 5(4): 101479-104182. doi:10.1016/j.xcrm.2024.101479
doi: 10.1016/j.xcrm.2024.101479
|
| [14] |
WU L, SUN S, QU F, et al. CXCL9 influences the tumor immune microenvironment by stimulating JAK/STAT pathway in triple-negative breast cancer[J]. Cancer Immunol Immunother, 2023, 72(6): 1479-1492. doi:10.1007/s00262-022-03343-w
doi: 10.1007/s00262-022-03343-w
|
| [15] |
QIAN C, HUI J, PENG Z, et al. Mucosal microbiota characterization in gastric cancer identifies immune-activated-related transcripts relevant gastric microbiome signatures[J]. Front Immunol, 2024, 15: 1435334-1435337. doi:10.3389/fimmu.2024.1435334
doi: 10.3389/fimmu.2024.1435334
|
| [16] |
HU G, SHEN S, ZHU M. CXCL9 is a dual‑role biomarker in colorectal cancer linked to mitophagy and modulated by ALKBH5[J]. Mol Med Rep, 2025, 32(1): 188-190. doi:10.3892/mmr.2025.13553
doi: 10.3892/mmr.2025.13553
|
| [17] |
SU Y, LIU J, TIAN Y, et al. HIF-1α Mediates Immunosuppression and Chemoresistance in Colorectal Cancer by Inhibiting CXCL9, -10 and -11[J]. Biomed Pharmacother, 2024, 173: 116427-116430. doi:10.1016/j.biopha.2024.116427
doi: 10.1016/j.biopha.2024.116427
|
| [18] |
卢旭满, 史正一, 雷元睿, 等. PCBP1在胃癌中的表达及其与铁死亡因子STUB1的关系[J]. 实用医学杂志, 2025, 41(19): 3026-3033.
|
| [19] |
徐俊, 王晓丽, 倪静怡, 等. 维迪西妥单抗治疗晚期胃癌的临床疗效及安全性[J]. 实用医学杂志, 2024, 40(20): 2913-2197.
|
| [20] |
MATSUOKA T, YASHIRO M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer[J]. Int J Mol Sci, 2024, 25(11): 5880-5883. doi:10.3390/ijms25115880
doi: 10.3390/ijms25115880
|
| [21] |
SU X, LIANG C, CHEN R, et al. Deciphering tumor microenvironment: CXCL9 and SPP1 as crucial determinants of tumor-associated macrophage polarity and prognostic indicators[J]. Mol Cancer, 2024, 23(1): 13-16. doi:10.1186/s12943-023-01931-7
doi: 10.1186/s12943-023-01931-7
|
| [22] |
GROLMUSZ V K, NAGY P, LIK I, et al. A common genetic variation in GZMB may associate with cancer risk in patients with Lynch syndrome[J]. Front Oncol, 2023, 13: 1005066-1005669. doi:10.3389/fonc.2023.1005066
doi: 10.3389/fonc.2023.1005066
|
| [23] |
HAN X, WEI Q, LV Y, et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment[J]. Mol Ther, 2022, 30(1): 327-340. doi:10.1016/j.ymthe.2021.08.028
doi: 10.1016/j.ymthe.2021.08.028
|
| [24] |
SEITZ S, DREYER T F, STANGE C, et al. CXCL9 inhibits tumour growth and drives anti-PD-L1 therapy in ovarian cancer[J]. Br J Cancer, 2022, 126(10): 1470-1480. doi:10.1038/s41416-022-01763-0
doi: 10.1038/s41416-022-01763-0
|
| [25] |
NAGASE Y, KODAMA M. CXCL9 and CXCL13 shape endometrial cancer immune-activated microenvironment via tertiary lymphoid structure formation[J]. Cancer Sci, 2025, 116(5): 1193-1202. doi:10.1111/cas.16371
doi: 10.1111/cas.16371
|
| [26] |
MAJCHRZAK A, LEWANDOWSKI F, HRYNKIEWICZ R, et al. Granzyme B and melittin in cancer immunotherapy: Molecular mechanisms and therapeutic perspectives in head and neck cancers[J]. Front Immunol, 2025, 16: 1628014-1628017. doi:10.3389/fimmu.2025.1628014
doi: 10.3389/fimmu.2025.1628014
|
| [27] |
MICHAUD D, STEWARD C R. Regulatory B cells in cancer[J]. Immunol Rev, 2021, 299(1): 74-92. doi:10.1111/imr.12939
doi: 10.1111/imr.12939
|