1 |
ESCALANTE D A, ANDERSON K G. Workup and Management of Thyroid Nodules [J]. Surg Clin North Am, 2022, 102(2): 285-307. doi:10.1016/j.suc.2021.12.006
doi: 10.1016/j.suc.2021.12.006
|
2 |
WONG R, FARRELL S G, GROSSMANN M. Thyroid nodules: Diagnosis and management [J]. Med J Aust, 2018, 209(2): 92-98. doi:10.5694/mja17.01204
doi: 10.5694/mja17.01204
|
3 |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
|
4 |
CIBAS E S, ALI S Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology [J]. Thyroid, 2017, 27(11): 1341-1346. doi:10.1089/thy.2017.0500
doi: 10.1089/thy.2017.0500
|
5 |
ALLEN L, AFIF A AL, RIGBY M H, et al. The role of repeat fine needle aspiration in managing indeterminate thyroid nodules [J]. J Otolaryngol Head Neck Surg, 2019, 48(1): 16. doi:10.1186/s40463-019-0338-7
doi: 10.1186/s40463-019-0338-7
|
6 |
暴珞宁, 王瑛, 陈东,等. 超声影像组学标签预测乳腺癌前哨淋巴结转移的价值 [J]. 实用医学杂志, 2021, 37(15): 2007-2011. doi:10.3969/j.issn.1006-5725.2021.15.020
doi: 10.3969/j.issn.1006-5725.2021.15.020
|
7 |
CONTI A, DUGGENTO A, INDOVINA I, et al. Radiomics in breast cancer classification and prediction [J]. Semin Cancer Biol, 2021, 72: 238-250. doi:10.1016/j.semcancer.2020.04.002
doi: 10.1016/j.semcancer.2020.04.002
|
8 |
李羚, 胡大涛, 夏春华,等. 基于CT影像组学诺模图预测头颈部恶性肿瘤淋巴结转移 [J]. 实用医学杂志, 2021, 37 (14): 1872-1877.
|
9 |
TESSLER F N, MIDDLETON W D, GRANT E G, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595. doi:10.1016/j.jacr.2017.01.046
doi: 10.1016/j.jacr.2017.01.046
|
10 |
CHEN J H, ZHANG Y Q, ZHU T T, et al. Applying machine-learning models to differentiate benign and malignant thyroid nodules classified as C-TIRADS 4 based on 2D-ultrasound combined with five contrast-enhanced ultrasound key frames [J]. Front Endocrinol (Lausanne), 2024, 15: 1299686. doi:10.3389/fendo.2024.1299686
doi: 10.3389/fendo.2024.1299686
|
11 |
ALYUSUF E Y, ALHMAYIN L, ALBASRI E, et al. Ultrasonographic predictors of thyroid cancer in Bethesda Ⅲ and Ⅳ thyroid nodules [J]. Front Endocrinol (Lausanne), 2024, 15: 1326134. doi:10.3389/fendo.2024.1326134
doi: 10.3389/fendo.2024.1326134
|
12 |
TALMOR G, BADASH I, ZHOU S, et al. Association of patient characteristics, ultrasound features, and molecular testing with malignancy risk in Bethesda Ⅲ-V thyroid nodules [J]. Laryngoscope Investig Otolaryngol, 2022, 7(4): 1243-1250. doi:10.1002/lio2.847
doi: 10.1002/lio2.847
|
13 |
O'CONNOR E, MULLINS M, O'CONNOR D, et al. The relationship between ultrasound microcalcifications and psammoma bodies in thyroid tumours: A single-institution retrospective study [J]. Clin Radiol, 2022, 77(1): e48-e54. doi:10.1016/j.crad.2021.09.014
doi: 10.1016/j.crad.2021.09.014
|
14 |
ALSHAHRANI A S, ALAMRI A S, BALKHOYOR A H, et al. The Prediction of Malignancy Risk in Thyroid Nodules Classified as Bethesda System Category Ⅲ (AUS/FLUS) and the Role of Ultrasound Finding for Prediction of Malignancy Risk [J]. Cureus, 2021, 13(9): e17924.
|
15 |
ALEXANDER E K, CIBAS E S. Diagnosis of thyroid nodules [J]. Lancet Diabetes Endocrinol, 2022, 10(7): 533-539. doi:10.1016/s2213-8587(22)00101-2
doi: 10.1016/s2213-8587(22)00101-2
|
16 |
KOBALY K, KIM C S, MANDEL S J. Contemporary Management of Thyroid Nodules [J]. Annu Rev Med, 2022, 73: 517-528. doi:10.1146/annurev-med-042220-015032
doi: 10.1146/annurev-med-042220-015032
|
17 |
ZHOU J, YIN L, WEI X, et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: The C-TIRADS [J]. Endocrine, 2020, 70(2): 256-279.
|
18 |
吴秀艳, 蔡雪珍, 刘舜辉,等. 甲状腺结节超声恶性危险分层指南对甲状腺乳头状癌的诊断价值:C-TIRADS与ATA指南比较 [J]. 中国医学影像学杂志, 2024, 32 (1): 34-41
|
19 |
YANG X Y, HUANG L F, HAN Y J, et al. Histopathological Analysis of Thyroid Nodules with Taller-Than-Wide Shape in Adults [J]. Int J Gen Med, 2024, 17: 5123-5131. doi:10.2147/ijgm.s473731
doi: 10.2147/ijgm.s473731
|
20 |
YU B, LI Y, YU X, et al. Differentiate Thyroid Follicular Adenoma from Carcinoma with Combined Ultrasound Radiomics Features and Clinical Ultrasound Features [J]. J Digit Imaging, 2022, 35(5): 1362-1372. doi:10.1007/s10278-022-00639-2
doi: 10.1007/s10278-022-00639-2
|
21 |
ZHOU H, JIN Y, DAI L, et al. Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images [J]. Eur J Radiol, 2020, 127: 108992. doi:10.1016/j.ejrad.2020.108992
doi: 10.1016/j.ejrad.2020.108992
|
22 |
LUO P, FANG Z, ZHANG P, et al. Radiomics Score Combined with ACR TI-RADS in Discriminating Benign and Malignant Thyroid Nodules Based on Ultrasound Images:A Retrospective Study [J]. Diagnostics (Basel), 2021, 11(6):1011. doi:10.3390/diagnostics11061011
doi: 10.3390/diagnostics11061011
|
23 |
LIANG J, HUANG X, HU H, et al. Predicting Malignancy in Thyroid Nodules:Radiomics Score Versus 2017 American College of Radiology Thyroid Imaging, Reporting and Data System [J]. Thyroid, 2018, 28(8): 1024-1033. doi:10.1089/thy.2017.0525
doi: 10.1089/thy.2017.0525
|
24 |
HUANG X, WU Z, ZHOU A, et al. Nomogram Combining Radiomics With the American College of Radiology Thyroid Imaging Reporting and Data System Can Improve Predictive Performance for Malignant Thyroid Nodules [J]. Front Oncol, 2021, 11: 737847. doi:10.3389/fonc.2021.737847
doi: 10.3389/fonc.2021.737847
|