实用医学杂志 ›› 2025, Vol. 41 ›› Issue (7): 1079-1083.doi: 10.3969/j.issn.1006-5725.2025.07.022
收稿日期:
2024-11-18
出版日期:
2025-04-10
发布日期:
2025-04-23
通讯作者:
梁道明
E-mail:daomingliangkm@163.com
基金资助:
Bangrong XU,Zhenghua JIANG,Xin CHEN,Jun CHEN,Haibo LUO,Daoming LIANG()
Received:
2024-11-18
Online:
2025-04-10
Published:
2025-04-23
Contact:
Daoming LIANG
E-mail:daomingliangkm@163.com
摘要:
肠黏膜屏障是天然和获得性免疫调节的关键部位,基本功能是在肠内容物与免疫系统之间起到屏障作用,其完整性对于维持机体健康至关重要。微小核糖核酸(microRNA, miRNA)是一种非编码小RNA分子,作为非常强大的遗传调节因子,miRNA可以通过与广泛的靶基因相互作用来指导整个细胞通路。近年来,相关研究表明,miRNA参与了肠黏膜屏障功能的调节,该文就miRNA在肠黏膜屏障中的作用进行综述,包括其作用机制、相关的临床研究成果及未来研究方向。以期探索miRNA在相关疾病机制研究以及诊断与治疗中的潜在价值。
中图分类号:
许帮荣,蒋正华,陈鑫,陈军,雒海波,梁道明. miRNA在肠黏膜屏障功能中的作用研究进展[J]. 实用医学杂志, 2025, 41(7): 1079-1083.
Bangrong XU,Zhenghua JIANG,Xin CHEN,Jun CHEN,Haibo LUO,Daoming LIANG. The role and research progress of miRNA in intestinal mucosal barrier function[J]. The Journal of Practical Medicine, 2025, 41(7): 1079-1083.
表1
miRNA在肠黏膜屏障中的研究进展"
miRNA类型 | 作用方式 | 作用结果 | 疾病类型 | 作用靶点 | 信号通路 | 参考文献 |
---|---|---|---|---|---|---|
miR-429 | 下调 | ↑ | 结肠炎 | / | AhR-miR-429 | [ |
miR-218a-5p | 上调 | ↑ | 急性胰腺炎 | / | Notch1 and RhoA/ROCK | [ |
miR-155 | 下调 | ↑ | 酒精性肝炎 | / | miRNA-155/SOCS 1/NF-κB | [ |
miR-211-5p | 下调 | ↑ | 功能性消化不良 | / | NEAT1/miR-211-5p/GDNF | [ |
miR-34a | 下调 | ↑ | 动脉粥样硬化患者肠黏膜屏障功能 | / | miR-34a/KLF4/NF-κB/tight unction protein | [ |
miR-221/222 | 下调 | ↑ | 反射性肠炎 | / | P65-miR-221/222-Sdc1 | [ |
miR-99a | 上调 | ↑ | 重症急性胰腺炎 | NOX4 | / | [ |
miR-145-5p | 上调 | ↑ | 克罗恩病 | SOX9/CLDN8 | miR-145-5p/SOX 9/CLDN 8 | [ |
miR-495 | 上调 | ↑ | 溃疡性结肠炎 | STAT3 | JAK/STAT3 | [ |
miR-155 | 下调 | ↑ | 大肠癌 | / | TLR 4/NF-κB | [ |
miR-200 | 上调 | ↓ | 非酒精性脂肪肝/肠黏膜屏障功能障碍 | SIRT1 | microRNA-200 and the MAPK | [ |
miR-103a-3p | 上调 | ↑ | 结肠炎 | BRD4 | Wnt/β-catenin | [ |
miR-181c | 下调 | ↓ | 肠黏膜屏障 | TNF-α | microRNA-181c/TNF-α/tight junction protein | [ |
miR-320 | 上调 | ↑ | 结肠炎相关性结直肠癌 | IL-6R | IL-6R/STAT3 | [ |
miR-155 | 下调 | ↓ | 脑损伤后的肠黏膜屏障功能 | claudin 1 | / | [ |
miR-320 | 上调 | ↑ | 烧伤后肠黏膜屏障功能 | PTEN | Akt/Bad/Caspase | [ |
miR-31-5p | 下调 | ↑ | 结肠炎 | / | AMPK/SIRT 1/NLRP 3 | [ |
miR-146b-5p | 下调 | ↑ | 克罗恩病 | / | MALAT1-miR146b-5p-CLDN11/NUMB | [ |
miR-124-3p | 上调 | ↓ | 老年性结肠炎 | T-synthase | miR-124-3p/T-synthase/O-glycans | [ |
miR-126 | 下调 | ↓ | 炎症性肠病 | S1PR 2 | PI3K/AKT | [ |
miR-182-5p | 下调 | ↑ | 溃疡性结肠炎 | claudin-2 | / | [ |
miR-3061 | 下调 | ↓ | 糖尿病所致脓毒症肠损伤 | Snail 1 | / | [ |
miR-29a | 下调 | ↑ | 腹泻型肠易激综合征 | / | / | [ |
1 |
BARTEL D P. MicroRNAs: Target Recognition and Regulatory Functions [J]. Cell, 2009, 136(2): 215-233. doi:10.1016/j.cell.2009.01.002
doi: 10.1016/j.cell.2009.01.002 |
2 |
CARTHEW R W, SONTHEIMER E J. Origins and Mechanisms of miRNAs and siRNAs [J]. Cell, 2009, 136(4): 642-655. doi:10.1016/j.cell.2009.01.035
doi: 10.1016/j.cell.2009.01.035 |
3 |
MCKEEVER P M, SCHNEIDER R, TAGHDIRI F, et al. MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer′s Disease [J]. Mol Neurobiol, 2018, 55(12): 8826-8841. doi:10.1007/s12035-018-1032-x
doi: 10.1007/s12035-018-1032-x |
4 |
DONG H, LEI J, DING L, et al. MicroRNA: Function, Detection, and Bioanalysis [J]. Chem Rev, 2013, 113(8): 6207-6233. doi:10.1021/cr300362f
doi: 10.1021/cr300362f |
5 |
HA M, KIM V N. Regulation of microRNA biogenesis [J]. Nat Rev Mol Cell Biol, 2014, 15(8): 509-524. doi:10.1038/nrm3838
doi: 10.1038/nrm3838 |
6 |
SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2018, 234(5): 5451-5465. doi:10.1002/jcp.27486
doi: 10.1002/jcp.27486 |
7 |
WANG H, CHAO K, NG S C, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease [J]. Genome Biol, 2016, 17:58. doi:10.1186/s13059-016-0901-8
doi: 10.1186/s13059-016-0901-8 |
8 |
MOWAT A M. Anatomical basis of tolerance and immunity to intestinal antigens [J]. Nat Rev Immunol, 2003, 3(4): 331-341. doi:10.1038/nri1057
doi: 10.1038/nri1057 |
9 |
SÁNCHEZ DE MEDINA F, ROMERO-CALVO I, MASCARAQUE C, et al. Intestinal Inflammation and Mucosal Barrier Function [J]. Inflamm Bowel Dis, 2014, 20(12): 2394-2404. doi:10.1097/mib.0000000000000204
doi: 10.1097/mib.0000000000000204 |
10 |
KURASHIMA Y, KIYONO H. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing [J]. Annu Rev Immunol, 2017, 35(1): 119-147. doi:10.1146/annurev-immunol-051116-052424
doi: 10.1146/annurev-immunol-051116-052424 |
11 |
TURNER J R. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809. doi:10.1038/nri2653
doi: 10.1038/nri2653 |
12 |
NALLE S C, TURNER J R. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease [J]. Mucosal Immunol, 2015, 8(4): 720-730. doi:10.1038/mi.2015.40
doi: 10.1038/mi.2015.40 |
13 |
PETERSON L W, ARTIS D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis [J]. Nat Rev Immunol, 2014, 14(3): 141-153. doi:10.1038/nri3608
doi: 10.1038/nri3608 |
14 |
ODENWALD M A, TURNER J R. The intestinal epithelial barrier: A therapeutic target?[J]. Nat Rev Gastroenterol Hepatoly, 2017, 14(1): 9-21. doi:10.1038/nrgastro.2016.169
doi: 10.1038/nrgastro.2016.169 |
15 |
KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay [J]. Nat Rev Genet, 2010, 11(9): 597-610. doi:10.1038/nrg2843
doi: 10.1038/nrg2843 |
16 |
MCKENNA L B, SCHUG J, VOUREKAS A, et al. MicroRNAs Control Intestinal Epithelial Differentiation, Architecture, and Barrier Function [J]. Gastroenterology, 2010, 139(5): 1654-1664.e1. doi:10.1053/j.gastro.2010.07.040
doi: 10.1053/j.gastro.2010.07.040 |
17 |
ZOU T, RAO J N, LIU L, et al. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells [J]. Am J Physiol Cell Physiol, 2015, 308(10): C813-24. doi:10.1152/ajpcell.00027.2015
doi: 10.1152/ajpcell.00027.2015 |
18 |
GOTO Y, KIYONO H. Epithelial cell microRNAs in gut immunity [J]. Nat Immunol, 2011, 12(3): 195-197. doi:10.1038/ni0311-195
doi: 10.1038/ni0311-195 |
19 |
WU F, ZHANG S, DASSOPOULOS T, et al. Identification of microRNAs associated with ileal and colonic Crohn′s disease [J]. Inflamm Bowel Dis, 2010, 16(10): 1729-1738. doi:10.1002/ibd.21267
doi: 10.1002/ibd.21267 |
20 |
WU F, ZIKUSOKA M, TRINDADE A, et al. MicroRNAs Are Differentially Expressed in Ulcerative Colitis and Alter Expression of Macrophage Inflammatory Peptide-2α [J]. Gastroenterology, 2008, 135(5): 1624-1635.e24. doi:10.1053/j.gastro.2008.07.068
doi: 10.1053/j.gastro.2008.07.068 |
21 |
MERGA Y, CAMPBELL B J, RHODES J M. Mucosal Barrier, Bacteria and Inflammatory Bowel Disease: Possibilities for Therapy [J]. Dig Dis, 2014, 32(4): 475-483. doi:10.1159/000358156
doi: 10.1159/000358156 |
22 |
CAMILLERI M. Leaky gut: Mechanisms, measurement and clinical implications in humans [J]. Gut, 2019, 68(8): 1516-1526. doi:10.1136/gutjnl-2019-318427
doi: 10.1136/gutjnl-2019-318427 |
23 |
HEINEMANN U, SCHUETZ A. Structural Features of Tight-Junction Proteins [J]. Int J Mol Sci, 2019, 20(23):6020. doi:10.3390/ijms20236020
doi: 10.3390/ijms20236020 |
24 |
YANG H, RAO J N, WANG J Y. Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs [J]. Tissue Barriers, 2014, 2(1):e28320. doi:10.4161/tisb.28320
doi: 10.4161/tisb.28320 |
25 |
CHU Y, ZHU Y, ZHANG Y, et al. Tetrandrine attenuates intestinal epithelial barrier defects caused by colitis through promoting the expression of Occludin via the AhR‐miR‐429 pathway [J]. FASEB J, 2021, 35(5):e21502. doi:10.1096/fj.202002086rr
doi: 10.1096/fj.202002086rr |
26 |
TAN Y, ZHANG W, WU H Y, et al. Effects of emodin on intestinal mucosal barrier by the upregulation of miR-218a-5p expression in rats with acute necrotizing pancreatitis [J]. Int J Immunopathol Pharmacol, 2020, 34:2058738420941765. doi:10.1177/2058738420941765
doi: 10.1177/2058738420941765 |
27 |
ZHONG W, CHEN J, XU G, et al. Kaempferol Ameliorated Alcoholic Hepatitis through Improving Intestinal Barrier Function by Targeting miRNA-155 Signaling [J]. Pharmacology, 2024, 109(3): 138-146. doi:10.1159/000537964
doi: 10.1159/000537964 |
28 |
WANG J, GU S, QIN B. Eosinophil and mast cell‐derived exosomes promote integrity of intestinal mucosa via the NEAT1/miR‐211‐5p/glial cell line‐derived neurotrophic factor axis in duodenum [J]. Environ Toxicol, 2023, 38(11): 2595-2607. doi:10.1002/tox.23895
doi: 10.1002/tox.23895 |
29 |
NIE H Z R, ZHOU Y W, YU X H, et al. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability [J]. Acta Pharmacol Sin, 2024, 45(6): 1189-1200. doi:10.1038/s41401-024-01238-3
doi: 10.1038/s41401-024-01238-3 |
30 |
WANG Z, WANG Q, GONG L, et al. The NF-κB-Regulated miR-221/222/Syndecan-1 Axis and Intestinal Mucosal Barrier Function in Radiation Enteritis [J]. Int J Radiat Oncol Biol Phys, 2022, 113(1): 166-176. doi:10.1016/j.ijrobp.2022.01.006
doi: 10.1016/j.ijrobp.2022.01.006 |
31 |
ZHANG Y, SHAO F, GUAN Z, et al. Overexpression of miR-99a Alleviates Intestinal Mucosal Barrier Injury in Rats with Severe Acute Pancreatitis [J]. J Interferon Cytokine Res, 2021, 41(2): 72-80. doi:10.1089/jir.2020.0085
doi: 10.1089/jir.2020.0085 |
32 |
ZHUANG X, CHEN B, HUANG S, et al. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease [J]. EBioMedicine, 2022, 76:103846. doi:10.1016/j.ebiom.2022.103846
doi: 10.1016/j.ebiom.2022.103846 |
33 |
CHU X Q, WANG J, CHEN G X, et al. Overexpression of microRNA-495 improves the intestinal mucosal barrier function by targeting STAT3 via inhibition of the JAK/STAT3 signaling pathway in a mouse model of ulcerative colitis [J]. Pathol Res Pract, 2018, 214(1): 151-162. doi:10.1016/j.prp.2017.10.003
doi: 10.1016/j.prp.2017.10.003 |
34 |
GAO Y, HAN T, HAN C, et al. Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier [J]. Inflammation, 2021, 44(5): 2078-2090. doi:10.1007/s10753-021-01485-0
doi: 10.1007/s10753-021-01485-0 |
35 |
ZHAO X, CUI D, YUAN W, et al. Berberine represses Wnt/β- catenin pathway activation via modulating the microRNA-103a-3p/Bromodomain-containing protein 4 axis, thereby refraining pyroptosis and reducing the intestinal mucosal barrier defect induced via colitis [J]. Bioengineered, 2022, 13(3): 7392-7409. doi:10.1080/21655979.2022.2047405
doi: 10.1080/21655979.2022.2047405 |
36 |
WU M Y, LUO Y X, JIA W X, et al. miRNA-320 inhibits colitis-associated colorectal cancer by regulating the IL-6R/STAT3 pathway in mice [J]. J Gastrointest Oncol, 2022, 13(2): 695-709. doi:10.21037/jgo-22-237
doi: 10.21037/jgo-22-237 |
37 |
KE J, BIAN X, LIU H, et al. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression [J]. Mol Med, 2019, 25(1):54. doi:10.1186/s10020-019-0122-1
doi: 10.1186/s10020-019-0122-1 |
38 |
YUAN Y, DENG S, YANG J, et al. Antagomir of miR-31-5p modulates macrophage polarization via the AMPK/SIRT1/NLRP3 signaling pathway to protect against DSS-induced colitis in mice [J]. Aging, 2024, 16(6): 5336-5353. doi:10.18632/aging.205651
doi: 10.18632/aging.205651 |
39 |
LI Y, ZHU L, CHEN P, et al. MALAT1 Maintains the Intestinal Mucosal Homeostasis in Crohn′s Disease via the miR-146b-5p-CLDN11/NUMB Pathway [J]. J Crohns Colitis, 2021, 15(9): 1542-1557. doi:10.1093/ecco-jcc/jjab040
doi: 10.1093/ecco-jcc/jjab040 |
40 |
TANG S, GUO W, KANG L, et al. MiRNA-182-5p aggravates experimental ulcerative colitis via sponging Claudin-2 [J]. J Mol Histol, 2021, 52(6): 1215-1224. doi:10.1007/s10735-021-10021-1
doi: 10.1007/s10735-021-10021-1 |
41 |
ZHU H, XIAO X, SHI Y, et al. Inhibition of miRNA‑29a regulates intestinal barrier function in diarrhea‑predominant irritable bowel syndrome by upregulating ZO‑1 and CLDN1 [J]. Exp Ther Med, 2020, 20(6):155. doi:10.3892/etm.2020.9284
doi: 10.3892/etm.2020.9284 |
42 |
WANG Y, ZENG Z, GUAN L, et al. GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway [J]. J Cell Mol Med, 2020, 24(11): 6107-6119. doi:10.1111/jcmm.15212
doi: 10.1111/jcmm.15212 |
43 |
SHEN S, ZHAO J, DAI Y, et al. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/TNF-α/tight junction axis[J]. Toxicol Lett, 2020, 321: 73-82. doi:10.1016/j.toxlet.2019.12.020
doi: 10.1016/j.toxlet.2019.12.020 |
44 |
PAN P, BAI L, HUA X, et al. miR-155 Regulates claudin1 Expression in Humans With Intestinal Mucosa Dysfunction After Brain Injury[J]. Transplant Proc, 2019, 51(10): 3474-3480. doi:10.1016/j.transproceed.2019.08.042
doi: 10.1016/j.transproceed.2019.08.042 |
45 |
HUANG L, SUN T Y, HU L J, et al. Elevated miR‐124‐3p in the aging colon disrupts mucus barrier and increases susceptibility to colitis by targeting T‐synthase[J]. Aging Cell, 2020, 19(11):e13252. doi:10.1111/acel.13252
doi: 10.1111/acel.13252 |
46 |
CHEN T, XUE H, LIN R, et al. MiR-126 impairs the intestinal barrier function via inhibiting S1PR2 mediated activation of PI3K/AKT signaling pathway[J]. Biochem Biophys Res Commun, 2017, 494(3/4): 427-432. doi:10.1016/j.bbrc.2017.03.043
doi: 10.1016/j.bbrc.2017.03.043 |
47 |
TAN F, CAO Y, ZHENG L, et al. Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling[J]. Front Immunol, 2022, 13:922614. doi:10.3389/fimmu.2022.922614
doi: 10.3389/fimmu.2022.922614 |
[1] | 陈英道,李海宁,李育英,张岐平,梁炳松,李国辉. 血清微小RNA-143-3p、微小RNA-188-5p水平对急性脑梗死患者静脉溶栓后预后不良的预测价值[J]. 实用医学杂志, 2025, 41(8): 1117-1122. |
[2] | 丁道奎,袁宇航,李延安,杨合英. 血清miR-141-3p、miR-223-3p水平与新生儿坏死性小肠结肠炎病情严重程度的关系[J]. 实用医学杂志, 2025, 41(7): 1050-1055. |
[3] | 管志伟,赵琼,邱建利,徐炎,黄勤挽,周鸿雲,赵君琪,毋颖慧. 加味人参乌梅汤通过TLR4/MyD88/pNF⁃κBp65信号通路对腹泻大鼠肠黏膜屏障的影响[J]. 实用医学杂志, 2025, 41(7): 944-952. |
[4] | 赵健,刘松杰,张观朝,沈裕厚,李凤臣,徐兵. 着丝粒蛋白F、miR-1-3p在中晚期胃癌患者血清中的表达及与预后的相关性[J]. 实用医学杂志, 2024, 40(3): 365-370. |
[5] | 吴海燕,王宝玉,贾宝辉. 外周血游离线粒体DNA、miR-146a表达对评估脓毒症患者近期预后的价值[J]. 实用医学杂志, 2024, 40(23): 3356-3361. |
[6] | 孙晓利,范慧洁. 血清miR-23a、miR-150、miR-150-5p水平与糖尿病性骨质疏松症的相关性[J]. 实用医学杂志, 2024, 40(16): 2244-2249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||