实用医学杂志 ›› 2025, Vol. 41 ›› Issue (7): 1070-1078.doi: 10.3969/j.issn.1006-5725.2025.07.021

• 综述 • 上一篇    

多组学与人工智能在预测和诊断结直肠癌肝转移中的应用

王立坤1,郝琦1,2,金炜涵1,2,董时正1,2,武雪亮3(),胡晓峰3,武亮,荀敬,马洪庆   

  1. 2.河北北方学院研究生学院 (河北 张家口 075000 )
    5.天津医科大学附属南开临床学院 (天津 300100 )
    6.河北医科大学第四医院
    外二科 (河北 石家庄 050000 )
  • 收稿日期:2024-12-25 出版日期:2025-04-10 发布日期:2025-04-23
  • 通讯作者: 武雪亮 E-mail:wxlwlk@163.com
  • 基金资助:
    河北省科技厅重点研发计划项目(22377786D);河北省省自然科学精准医学联合基金项目(H2022405029);河北省卫计委医学科学研究重点课题计划(20250886);张家口市科技局指导性项目(2421090D)

Application of multi⁃omics and artificial intelligence in the prediction and diagnosis of liver metastases in colorectal cancer

Likun WANG1,Qi HAO1,2,Weihan JIN1,2,Shizheng DONG1,2,Xueliang WU3(),Xiaofeng HU3,Liang WU,Jing XUN,Hongqing MA   

  1. *.Department of Ultrasonic Medicine,the First Affiliated Hospital of Hebei North University,Zhangjiakou 075000,Hebei,China
  • Received:2024-12-25 Online:2025-04-10 Published:2025-04-23
  • Contact: Xueliang WU E-mail:wxlwlk@163.com

摘要:

结直肠癌是全球癌症相关发病率和病死率的主要原因之一,肝转移显著影响患者的预后。传统的诊断方法,如影像学检查和生物标志物检测,往往缺乏足够的敏感性和特异性,凸显了对更精确技术的需求。近年来,基因组学、转录组学、蛋白质组学、代谢组学和表观遗传学等技术的出现彻底改变了对结直肠癌生物学机制的理解。这些方法能够全面分析基因突变、基因表达、蛋白质变化和代谢重编程,所有这些因素均参与了转移过程的形成。本文围绕人工智能技术在分析复杂的多组学数据、提高诊断准确性以及协助个性化治疗策略方面的先进的能力,探讨了AI在多组学分析的数据质量、模型可解释性和临床转化方面的挑战,以及单细胞测序和空间组学等新兴技术结合大规模、多中心的研究进一步增强这些工具的临床应用的未来方向。

关键词: 结直肠癌肝转移, 人工智能, 基因组学, 转录组学, 蛋白质组学

Abstract:

Colorectal cancer stands as a leading cause of cancer?related morbidity and mortality globally, with liver metastases being a significant determinant of patient prognosis. Conventional diagnostic methods, including imaging studies and biomarker testing, frequently exhibit inadequate sensitivity and specificity, underscoring the necessity for more advanced technologies. Recent advancements in genomics, transcriptomics, proteomics, metabolomics, and epigenomics have revolutionized our understanding of the biological mechanisms driving colorectal cancer. These methodologies enable comprehensive analyses of genetic mutations, gene expression profiles, protein modifications, and metabolic reprogramming, all of which are pivotal to the metastatic process. This article highlights the advanced capabilities of artificial intelligence (AI) technologies in processing complex multi?omics data, thereby enhancing diagnostic accuracy and supporting personalized treatment strategies. It also addresses the challenges AI encounters in multi?omics analyses, such as ensuring data quality, improving model interpretability, and facilitating clinical translation. Additionally, it explores the potential integration of emerging technologies like single?cell sequencing and spatial omics into large?scale, multicenter studies to further enhance the clinical utility of these tools.

Key words: colorectal cancer with liver metastasis, artificial intelligence, genomics, transcriptomics, proteomics

中图分类号: