1 |
REBECCA L S, NIKITA S W, ANDREA C, et al. Colorectal cancer statistics, 2023 [J]. CA Cancer J Clin, 2023, 73(3): 233-254. doi:10.3322/caac.21772
doi: 10.3322/caac.21772
|
2 |
ZHANG S M, SHEN C, LI J, et al. Identification of Hub Genes for Colorectal Cancer with Liver Metastasis Using miRNA-mRNA Network [J]. Dis Markers, 2023, 2023: 2295788. doi:10.1155/2023/2295788
doi: 10.1155/2023/2295788
|
3 |
JENNIE E, HENRIK N, CECILIA S, et al. Colorectal cancer liver metastases-a population-based study on incidence, management and survival [J]. BMC Cancer, 2018,18(1): 78-88. doi:10.1186/s12885-017-3925-x
doi: 10.1186/s12885-017-3925-x
|
4 |
ZHANG Z G, ZHANG C Y, XIAO L, et al. Diagnosis of Early Cervical Cancer with a Multimodal Magnetic Resonance Image under the Artificial Intelligence Algorithm [J]. Contrast Media Mol Imaging, 2022, 2022: 6495309. doi:10.1155/2022/6495309
doi: 10.1155/2022/6495309
|
5 |
MICHAEL B, MOSTAFA E, ZHANG D N, et al. Evaluation of health economic impact of initial diagnostic modality selection for colorectal cancer liver metastases in suspected patients in China, Japan and the USA [J]. J Med Econ, 2023, 26(1): 219-232. doi:10.1080/13696998.2023.2173436
doi: 10.1080/13696998.2023.2173436
|
6 |
LOU K X, CHEN N, LI Z H, et al. Intelligent Algorithm-Based Ultrasound Images in Evaluation of Therapeutic Effects of Radiofrequency Ablation for Liver Tumor and Analysis on Risk Factors of Postoperative Infection [J]. Contrast Media Mol Imaging, 2022, 2022: 5232411. doi:10.1155/2022/5232411
doi: 10.1155/2022/5232411
|
7 |
BITA H, PEGAH K, MOHAMMADREZA S, et al. Current state of the art imaging approaches for colorectal liver metastasis [J]. Hepatobiliary Surg Nutr, 2020, 9(1): 35-48. doi:10.21037/hbsn.2019.05.11
doi: 10.21037/hbsn.2019.05.11
|
8 |
HIROKI O, NAOKI I, ATSUO T, et al. Multicentre single-arm phase II trial evaluating the safety and effiCacy of Panitumumab and iRinOtecan in NeoRAS Wild-type mEtaStatic colorectal cancer patientS (C-PROWESS trial): Study protocol [J]. BMJ Open, 2022, 12(9): e063071. doi:10.1136/bmjopen-2022-063071
doi: 10.1136/bmjopen-2022-063071
|
9 |
NICOLA R, JONNY H, LI W Q, et al. The future of digital health with federated learning [J]. NPJ Digit Med, 2020, 3: 119. doi:10.1038/s41746-020-00323-1
doi: 10.1038/s41746-020-00323-1
|
10 |
WILJAN J A J, REMCO T P, CRUCHTEN VAN, et al. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty [J]. Front Cell Dev Biol, 2022, 10: 1051311. doi:10.3389/fcell.2022.1051311
doi: 10.3389/fcell.2022.1051311
|
11 |
YANG L, ARUP B, LI Y, et al. Depleting receptor tyrosine kinases EGFR and HER2 overcomes resistance to EGFR inhibitors in colorectal cancer [J]. J Exp Clin Cancer Res, 2022, 41(1):184-202. doi:10.1186/s13046-022-02389-z
doi: 10.1186/s13046-022-02389-z
|
12 |
王侨,栾婷,王剑松,等. LASS2基因对恶性肿瘤作用机制研究进展[J]. 实用医学杂志, 2019,35(12): 2020-2024.
|
13 |
MOHAMMAD A, AL-MTERIN KH, MURSHED A, et al. Associations of different immune checkpoints-expressing CD4(+) Treg/ T cell subsets with disease-free survival in colorectal cancer patients [J]. BMC Cancer, 2022, 22(1): 601-613. doi:10.1186/s12885-022-09710-1
doi: 10.1186/s12885-022-09710-1
|
14 |
WU X, GUAN S, LU Y, et al. Macrophage-derived SHP-2 inhibits the metastasis of colorectal cancer via Tie2-PI3K signals[J]. Oncol Res, 2023, 31(2):125-139. doi:10.32604/or.2023.028657
doi: 10.32604/or.2023.028657
|
15 |
YE D J, LIU H S, ZHAO G J, et al. LncGMDS-AS1 promotes the tumorigenesis of colorectal cancer through HuR-STAT3/Wnt axis [J]. Cell Death Dis, 2023, 14 (2): 165-177. doi:10.1038/s41419-023-05700-8
doi: 10.1038/s41419-023-05700-8
|
16 |
DOHA E, NADIA M, SAHRISH K H, et al. Molecular functions of microRNAs in colorectal cancer: recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance [J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(8): 5617-5630. doi:10.1007/s00210-024-03076-w
doi: 10.1007/s00210-024-03076-w
|
17 |
CHEN T, JIANG Q S, WANG Z L, et al. LncRNA AF117829.1 is correlated with prognosis and immune infiltration and facilitates tumor progression by targeting OR7C1 in colorectal cancer [J]. Transl Cancer Res, 2024, 13(10): 5347-5364. doi:10.21037/tcr-24-378
doi: 10.21037/tcr-24-378
|
18 |
ZEESHAN H, KIP D Z, HECTOR G A, et al. Assessment of label-free quantification and missing value imputation for proteomics in non-human primates [J]. BMC Genomics, 2022, 23 (1): 496-509. doi:10.1186/s12864-022-08723-1
doi: 10.1186/s12864-022-08723-1
|
19 |
WU L L, GAO C F. Comprehensive Overview the Role of Glycosylation of Extracellular Vesicles in Cancers [J]. ACS Omega, 2023, 8(50): 47380-47392. doi:10.1021/acsomega.3c07441
doi: 10.1021/acsomega.3c07441
|
20 |
NICOLA F, SUSANNA P, VAN W JAN, et al. Differential cytokine and chemokine expression after ablation vs. resection in colorectal cancer liver metastasis [J]. Surg Open Sci, 2024, 18: 29-34. doi:10.1016/j.sopen.2024.01.005
doi: 10.1016/j.sopen.2024.01.005
|
21 |
徐辉,唐言华,刘继武,等. 基质金属蛋白酶2,整合素-金属蛋白酶17及上皮性钙粘附蛋白E在结直肠癌癌组织中的表达及临床意义[J]. 实用医学杂志, 2021, 37(2): 220-225.
|
22 |
AN Y, DUAN H. The role of m6A RNA methylation in cancer metabolism [J]. Mol Cancer, 2022, 21 (1): 14-37. doi:10.1186/s12943-022-01500-4
doi: 10.1186/s12943-022-01500-4
|
23 |
ROSA F, MICHELA R, GIROLAMA LA M, et al. Dual Role of the Alternative Reading Frame ARF Protein in Cancer [J]. Biomolecules, 2019, 9(3):1-21. doi:10.3390/biom9030087
doi: 10.3390/biom9030087
|
24 |
OMBRETTA G, LUCAL, GIANLUCA B, et al. Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis [J]. Aging Cell, 2023, 22(7): e13853. doi:10.1111/acel.13853
doi: 10.1111/acel.13853
|
25 |
CHEN J R, CAO L X, MA J H, et al. HDAC8 Promotes Liver Metastasis of Colorectal Cancer via Inhibition of IRF1 and Upregulation of SUCNR1 [J]. Oxid Med Cell Longev, 2022, 2022: 2815187. doi:10.1155/2022/2815187
doi: 10.1155/2022/2815187
|
26 |
YING Y, WANG M L, CHEN Y H, et al. Zinc finger protein 280C contributes to colorectal tumorigenesis by maintaining epigenetic repression at H3K27me3-marked loci [J]. Proc Natl Acad Sci U S A,2022, 119(22): e2120633119. doi:10.1073/pnas.2120633119
doi: 10.1073/pnas.2120633119
|
27 |
ZHANG C, WANG L, JIN C, et al. Long non-coding RNA Lnc-LALC facilitates colorectal cancer liver metastasis via epigenetically silencing LZTS1 [J]. Cell Death Dis, 2021, 12(2): 224-238. doi:10.1038/s41419-021-03461-w
doi: 10.1038/s41419-021-03461-w
|
28 |
FAN W, CAO D Y, YANG B, et al. Hepatic prohibitin 1 and methionine adenosyltransferase α1 defend against primary and secondary liver cancer metastasis [J]. J Hepatol, 2023, 80(3): 443-453. doi:10.1016/j.jhep.2023.11.022
doi: 10.1016/j.jhep.2023.11.022
|
29 |
PHILLIP M S, ANGELES D, YUKI N, et al. The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer [J]. Cell Rep, 2018, 23(4): 1178-1191. doi:10.1016/j.celrep.2018.03.118
doi: 10.1016/j.celrep.2018.03.118
|
30 |
LIU F, SONG Z M, WANG X D, et al. Long Non-coding RNA Signature for Liver Metastasis of Colorectal Cancers [J]. Front Cell Dev Biol, 2021, 9: 707115. doi:10.3389/fcell.2021.707115
doi: 10.3389/fcell.2021.707115
|
31 |
ROSELIN M, SUNITA P, PRABHAT K S, et al. Deep Learning Model for the Image Fusion and Accurate Classification of Remote Sensing Images [J]. Comput Intell Neurosci, 2022, 2022: 2668567.
|
32 |
SEBASTIAN F, CHRISTINA G, ANN W et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer [J]. Nat Med, 2023, 29(2): 430-439. doi:10.1038/s41591-022-02134-1
doi: 10.1038/s41591-022-02134-1
|
33 |
FEDERICA P, BLANCA G, FRANCISCO G V, et al. Proteotranscriptomic analysis of advanced colorectal cancer patient derived organoids for drug sensitivity prediction [J]. J Exp Clin Cancer Res, 2023, 42(1):8-29. doi:10.1186/s13046-022-02591-z
doi: 10.1186/s13046-022-02591-z
|
34 |
STANZIONE M, ZHONG J, WONG E, et al. Translesion DNA synthesis mediates acquired resistance to olaparib plus temozolomide in small cell lung cancer [J]. Sci Adv, 2022, 8(19): eabn1229. doi:10.1126/sciadv.abn1229
doi: 10.1126/sciadv.abn1229
|
35 |
ALARCOS C, CORNELIA O, JEROME B, et al. Towards a minimal generic set of domains of functioning and health [J]. BMC Public Health, 2014, 14: 218. doi:10.1186/1471-2458-14-218
doi: 10.1186/1471-2458-14-218
|
36 |
MARTIN S, ZHAO Y L, LI X X, et al. An interactive atlas of genomic, proteomic, and metabolomic biomarkers promotes the potential of proteins to predict complex diseases [J]. Sci Rep, 2024, 14(1): 12710-12719. doi:10.1038/s41598-024-63399-9
doi: 10.1038/s41598-024-63399-9
|
37 |
MYKHAYLO S, ALEXANDER T B, ZOE P K, et al. Directional integration and pathway enrichment analysis for multi-omics data [J]. Nat Commun, 2024, 15(1): 5690-5703. doi:10.1038/s41467-024-49986-4
doi: 10.1038/s41467-024-49986-4
|
38 |
BAO X W, LI Q, CHEN D, et al. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer [J]. Cell Rep Med, 2024, 5(2):101399-101422. doi:10.1016/j.xcrm.2024.101399
doi: 10.1016/j.xcrm.2024.101399
|
39 |
PRITAM K, SATYAJIT B, SUMAN M, et al. Machine learning for the advancement of genome-scale metabolic modeling [J]. Biotechnol Adv, 2024, 74:108400. doi:10.1016/j.biotechadv.2024.108400
doi: 10.1016/j.biotechadv.2024.108400
|
40 |
CHENG L, HUANG Q, ZHU Z Q, et al. MoAGL-SA: a multi-omics adaptive integration method with graph learning and self-attention for cancer subtype classification [J]. BMC Bioinformatics, 2024, 25(1): 364-382. doi:10.1186/s12859-024-05989-y
doi: 10.1186/s12859-024-05989-y
|
41 |
PASQUALE A, MICAELA C, TERESA C, et al. Artificial Intelligence to Early Predict Liver Metastases in Patients with Colorectal Cancer: Current Status and Future Prospectives [J]. Life (Basel), 2023, 13 (10):1-17. doi:10.3390/life13102027
doi: 10.3390/life13102027
|
42 |
AMIRHOSSEIN A Y, ALI M, TAPAK L L, et al. Using machine learning approach for screening metastatic biomarkers in colorectal cancer and predictive modeling with experimental validation [J]. Sci Rep, 2023, 13(1): 19426-19442. doi:10.1038/s41598-023-46633-8
doi: 10.1038/s41598-023-46633-8
|
43 |
李晓增,王宝珠,郭志涛,等. 一种用于低剂量CT的微小细节保护CNN与Transformer融合去噪方法[J]. 中国医学物理学杂志, 2024, 41(7): 842-850.
|
44 |
YE H X, ZHANG X Y, WANG C, et al. Batch-effect correction with sample remeasurement in highly confounded case-control studies [J]. Nat Comput Sci, 2024, 3(8): 709-719. doi:10.1038/s43588-023-00500-8
doi: 10.1038/s43588-023-00500-8
|
45 |
李萍,陈慧,庄君龙. 快速康复外科在机器人辅助腹腔镜膀胱切除回肠造口术中的应用[J]. 中华腔镜泌尿外科杂志(电子版),2024,18(3):249-253. DOI:10.3877/cma.j.issn.1674-3253.2024.03.009
doi: 10.3877/cma.j.issn.1674-3253.2024.03.009
|
46 |
VISWAN V, NOUSHATH S, MUFTI M. Interpreting artificial intelligence models: A systematic review on the application of LIME and SHAP in Alzheimer's disease detection [J]. Brain Inform, 2024, 11(1): 10-38. doi:10.1186/s40708-024-00222-1
doi: 10.1186/s40708-024-00222-1
|