实用医学杂志 ›› 2025, Vol. 41 ›› Issue (4): 500-508.doi: 10.3969/j.issn.1006-5725.2025.04.006
• 基础研究 • 上一篇
收稿日期:
2024-11-25
出版日期:
2025-02-25
发布日期:
2025-02-28
通讯作者:
卞华伟
E-mail:southnutrition@sina.com
基金资助:
Zhizhou XIAO1,Ying HUANG2,Huawei. BIAN1()
Received:
2024-11-25
Online:
2025-02-25
Published:
2025-02-28
Contact:
Huawei. BIAN
E-mail:southnutrition@sina.com
摘要:
目的 本研究旨在探讨苦豆子碱(aloperine,ALO)通过Wnt/β-catenin信号通路介导的自噬和凋亡过程对骨质疏松(osteoporosis,OP)小鼠骨代谢的影响。 方法 将60只小鼠随机分成6组,每组10只:Sham组(假手术小鼠)、OP组(切除双侧卵巢建立骨质疏松症模型)、L-ALO组(OP小鼠腹腔注射10 mg/kg苦豆子碱)、M-ALO组(OP小鼠腹腔注射20 mg/kg苦豆子碱)、H-ALO组(OP小鼠腹腔注射30 mg/kg苦豆子碱)和EV组(OP小鼠灌胃0.09 mg/kg戊酸雌二醇),造模给药。检测小鼠胫骨的骨密度(BMD)与骨微结构。HE染色观察胫骨骨组织形态。ELISA检测小鼠血清中OCN、OPG、ALP、Ca和P的水平变化。免疫蛋白印迹检测LC3-Ⅱ/LC3-Ⅰ、Beclin-1、P62、Caspase-3、Caspase-9、Bax、Wnt3a、β-catenin和C-Myc蛋白表达水平。免疫荧光检测自噬小体。 结果 与Sham组相比,OP组的BMD和骨小梁厚度显著降低,骨小梁分离度和骨表面积与体积显著增加(P < 0.05);OPG、OCN、Ca和P水平显著下调,ALP水平显著上调(P < 0.05);LC3-Ⅱ/LC3-Ⅰ比值、Beclin-1、Wnt3a、β-catenin和C-Myc蛋白表达水平显著降低,P62、Caspase-3、Caspase-9和Bax蛋白表达水平显著增加(P < 0.05)。与OP组相比,L-ALO组、M-ALO组和H-ALO组的BMD和骨小梁厚度显著增加,骨小梁分离度和骨表面积与体积显著降低(P < 0.05);OPG、OCN、Ca和P水平显著上调,ALP水平显著下调(P < 0.05);LC3-Ⅱ/LC3-Ⅰ比值、Beclin-1、Wnt3a、β-catenin和C-Myc蛋白表达水平显著增加,P62、Caspase-3、Caspase-9和Bax蛋白表达水平显著降低(P < 0.05),并呈剂量依赖性。与OP组相比,EV组的BMD和骨小梁厚度显著增加,骨小梁分离度和骨表面积与体积比显著降低(P < 0.05);OPG、OCN、Ca和P水平显著上调,ALP水平显著下调(P < 0.05);LC3-Ⅱ/LC3-Ⅰ比值、Beclin-1、Wnt3a、β-catenin和C-Myc蛋白表达水平显著增加,P62、Caspase-3、Caspase-9和Bax蛋白表达水平显著降低(P < 0.05)。 结论 苦豆子碱可能通过促进成骨细胞自噬,并抑制其凋亡来改善OP小鼠的骨代谢,其机制可能与Wnt/β-catenin信号通路的激活有关。
中图分类号:
肖知周,黄莺,卞华伟. 基于Wnt/β-catenin信号通路介导的自噬和凋亡探讨苦豆子碱对骨质疏松小鼠骨代谢的影响[J]. 实用医学杂志, 2025, 41(4): 500-508.
Zhizhou XIAO,Ying HUANG,Huawei. BIAN. To investigate the effect of aloperine on bone metabolism in osteoporotic mice based on autophagy and apoptosis mediated by Wnt/β⁃catenin signaling pathway[J]. The Journal of Practical Medicine, 2025, 41(4): 500-508.
表1
各组小鼠BMD与骨微结构参数的比较(n = 10) (x ± s)"
组别 | BMD/(g/cm2) | 骨小梁厚度/μm | 骨小梁分离度/(pg/mL) | 骨表面积与体积比/(1/mm) |
---|---|---|---|---|
Sham组 | 0.46 ± 0.05 | 140.55 ± 14.94 | 322.33 ± 61.57 | 22.98 ± 3.26 |
OP组 | 0.22 ± 0.03? | 93.23 ± 13.61? | 869.52 ± 89.29? | 38.52 ± 3.34? |
L-ALO组 | 0.28 ± 0.04# | 106.97 ± 13.53# | 842.14 ± 86.99# | 32.91 ± 3.07# |
M-ALO组 | 0.37 ± 0.05#△ | 120.26 ± 12.87#△ | 637.16 ± 73.85#△ | 28.28 ± 3.11#△ |
H-ALO组 | 0.44 ± 0.04#▽ | 132.48 ± 12.01#▽ | 416.97 ± 71.55#▽ | 23.46 ± 3.03#▽ |
EV组 | 0.38 ± 0.03# | 123.42 ± 14.04# | 716.28 ± 70.85# | 27.16 ± 3.24# |
F值 | 975.960 | 951.862 | 914.697 | 982.343 |
P值 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
表2
各组小鼠骨代谢相关指标的比较(n = 10) (x ± s)"
组别 | OPG/(ng/L) | OCN/(ng/L) | ALP/(U/L) | Ca/(mmol/L) | P/(mmol/L) |
---|---|---|---|---|---|
Sham组 | 11.87 ± 1.33 | 17.24 ± 1.67 | 41.68 ± 5.27 | 2.64 ± 0.31 | 2.89 ± 0.39 |
OP组 | 4.23 ± 0.71? | 7.28 ± 1.18? | 86.94 ± 8.97? | 1.13 ± 0.16? | 1.09 ± 0.16 |
L-ALO组 | 6.87 ± 1.31# | 9.57 ± 1.21# | 71.16 ± 8.12 | 1.61 ± 0.22# | 1.47 ± 0.22 |
M-ALO组 | 8.94 ± 1.09#△ | 13.59 ± 1.71#△ | 60.01 ± 7.69#△ | 1.99 ± 0.16#△ | 2.15 ± 0.35 |
H-ALO组 | 10.96 ± 1.48#▽ | 16.99 ± 1.87#▽ | 43.67 ± 8.02#▽ | 2.59 ± 0.29#▽ | 2.87 ± 0.38 |
EV组 | 9.46 ± 1.22# | 14.23 ± 1.56# | 61.59 ± 8.15# | 2.16 ± 0.21# | 2.22 ± 0.33 |
F值 | 671.441 | 924.945 | 779.936 | 969.647 | 587.916 |
P值 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
表3
各组小鼠自噬相关蛋白的比较(n = 10) (x ± s)"
组别 | LC3-Ⅱ/LC3-Ⅰ | Beclin-1 | P62 |
---|---|---|---|
Sham组 | 1.03 ± 0.13 | 1.06 ± 0.14 | 0.41 ± 0.06 |
OP组 | 0.29 ± 0.03? | 0.33 ± 0.05? | 1.39 ± 0.16? |
L-ALO组 | 0.41 ± 0.06# | 0.49 ± 0.06# | 1.12 ± 0.15# |
M-ALO组 | 0.72 ± 0.09#△ | 0.77 ± 0.09#△ | 0.79 ± 0.10#△ |
H-ALO组 | 1.01 ± 0.11#▽ | 1.02 ± 0.15#▽ | 0.45 ± 0.06#▽ |
EV组 | 0.69 ± 0.07# | 0.76 ± 0.10# | 0.71 ± 0.09# |
F值 | 858.761 | 666.697 | 765.989 |
P值 | < 0.001 | < 0.001 | < 0.001 |
表4
各组小鼠凋亡相关蛋白的比较(n = 10) (x ± s)"
组别 | Caspase-3 | Caspase-9 | Bax |
---|---|---|---|
Sham组 | 0.31 ± 0.05 | 0.19 ± 0.03 | 0.23 ± 0.04 |
OP组 | 1.23 ± 0.14* | 1.16 ± 0.15* | 1.29 ± 0.17* |
L-ALO组 | 0.98 ± 0.10# | 0.92 ± 0.09# | 0.92 ± 0.11# |
M-ALO组 | 0.69 ± 0.08#△ | 0.71 ± 0.05#△ | 0.66 ± 0.07#△ |
H-ALO组 | 0.34 ± 0.05#▽ | 0.23 ± 0.03#▽ | 0.29 ± 0.04#▽ |
EV组 | 0.67 ± 0.09# | 0.51 ± 0.08# | 0.61 ± 0.09# |
F值 | 882.281 | 879.487 | 716.943 |
P值 | < 0.001 | < 0.001 | < 0.001 |
表5
各组小鼠Wnt/ β-catenin信号通路相关蛋白的比较(n = 10) (x ± s)"
组别 | Wnt3a | β-catenin | C-Myc |
---|---|---|---|
Sham组 | 1.03 ± 0.10 | 1.05 ± 0.11 | 1.12 ± 0.16 |
OP组 | 0.23 ± 0.04? | 0.29 ± 0.05? | 0.34 ± 0.05? |
L-ALO组 | 0.45 ± 0.06# | 0.49 ± 0.06# | 0.52 ± 0.07# |
M-ALO组 | 0.75 ± 0.09#△ | 0.77 ± 0.09#△ | 0.81 ± 0.10#△ |
H-ALO组 | 0.98 ± 0.10#▽ | 1.01 ± 0.13#▽ | 1.08 ± 0.16#▽ |
EV组 | 0.78 ± 0.10# | 0.79 ± 0.11# | 0.82 ± 0.11# |
F值 | 955.455 | 795.038 | 614.914 |
P值 | < 0.001 | < 0.001 | < 0.001 |
1 |
GREGSON C L, ARMSTRONG D J, BOWDEN J, et al. UK clinical guideline for the prevention and treatment of osteoporosis [J]. Arch Osteoporos, 2022, 17(1): 58. doi:10.1007/s11657-022-01061-5
doi: 10.1007/s11657-022-01061-5 |
2 |
ONIZUKA N, ONIZUKA T. Disparities in Osteoporosis Prevention and Care: Understanding Gender, Racial, and Ethnic Dynamics [J]. Curr Rev Musculoskelet Med, 2024, 17(9): 365-372. doi:10.1007/s12178-024-09909-8
doi: 10.1007/s12178-024-09909-8 |
3 |
FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis [J]. Semin Cell Dev Biol, 2022, 123: 14-21. doi:10.1016/j.semcdb.2021.05.014
doi: 10.1016/j.semcdb.2021.05.014 |
4 |
ZHANG Y W, CAO M M, LI Y J, et al. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function [J]. J Orthop Translat, 2022, 37: 46-60. doi:10.1016/j.jot.2022.08.003
doi: 10.1016/j.jot.2022.08.003 |
5 |
CHANG Z, ZHANG P, ZHANG M, et al. Aloperine suppresses human pulmonary vascular smooth muscle cell proliferation via inhibiting inflammatory response [J]. Chin J Physiol, 2019, 62(4): 157-165. doi:10.4103/cjp.cjp_27_19
doi: 10.4103/cjp.cjp_27_19 |
6 |
HU R, CHEN L, CHEN X, et al. Aloperine improves osteoporosis in ovariectomized mice by inhibiting RANKL-induced NF-κB, ERK and JNK approaches [J]. Int Immunopharmacol, 2021, 97: 107720. doi:10.1016/j.intimp.2021.107720
doi: 10.1016/j.intimp.2021.107720 |
7 |
WANG X, TIAN Y, LIANG X, et al. Bergamottin promotes osteoblast differentiation and bone formation via activating the Wnt/β-catenin signaling pathway [J]. Food Funct, 2022, 13(5): 2913-2924. doi:10.1039/d1fo02755g
doi: 10.1039/d1fo02755g |
8 | CAI Y, SUN H, SONG X, et al. The Wnt/β-catenin signaling pathway inhibits osteoporosis by regulating the expression of TERT: An in vivo and in vitro study [J]. Aging (Albany NY), 2023, 15(20): 11471-11488. |
9 |
LI X, LU Y, WEN P, et al. Matrine restrains the development of colorectal cancer through regulating the AGRN/Wnt/β-catenin pathway [J]. Environ Toxicol, 2023, 38(4): 809-819. doi:10.1002/tox.23730
doi: 10.1002/tox.23730 |
10 |
李永志,韩礼军,李智斌,等. 秦岭箭叶淫羊藿对骨质疏松大鼠骨代谢及胫骨骨微结构的影响[J]. 疑难病杂志,2024,23(8):993-998,1001. doi:10.3969/j.issn.1671-6450.2024.08.019
doi: 10.3969/j.issn.1671-6450.2024.08.019 |
11 |
罗兰兰,张宇静,任明诗,等. 杜仲汤对去卵巢大鼠骨质疏松症的影响及机制研究[J]. 中药新药与临床药理,2024,35(4):461-468. doi:10.19378/j.issn.1003-9783.2024.04.002
doi: 10.19378/j.issn.1003-9783.2024.04.002 |
12 |
OH W T, YANG Y S, XIE J, et al. WNT-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects [J]. Mol Ther, 2023, 31(2): 435-453. doi:10.1016/j.ymthe.2022.09.018
doi: 10.1016/j.ymthe.2022.09.018 |
13 |
WARREN J T, ZOU W, DECKER C E, et al. Correlating RANK ligand/RANK binding kinetics with osteoclast formation and function [J]. J Cell Biochem, 2015, 116(11): 2476-2483. doi:10.1002/jcb.25191
doi: 10.1002/jcb.25191 |
14 |
ZADJALI F AL, BROOKS J, O'NEILL T W, et al. Experiences of postmenopausal osteoporosis: A narrative review [J]. Disabil Rehabil, 2024, 46(5): 828-840. doi:10.1080/09638288.2023.2169770
doi: 10.1080/09638288.2023.2169770 |
15 |
TRÉMOLLIERES F A, CHABBERT-BUFFET N, PLU-BUREAU G, et al. Management of postmenopausal women: Collège National des Gynécologues et Obstétriciens Français (CNGOF) and Groupe d'Etude sur la Ménopause et le Vieillissement (GEMVi) Clinical Practice Guidelines [J]. Maturitas, 2022, 163: 62-81. doi:10.1016/j.maturitas.2022.05.008
doi: 10.1016/j.maturitas.2022.05.008 |
16 |
YUAN F, PENG W, YANG C, et al. Teriparatide versus bisphosphonates for treatment of postmenopausal osteoporosis: A meta-analysis [J]. Int J Surg, 2019, 66: 1-11. doi:10.1016/j.ijsu.2019.03.004
doi: 10.1016/j.ijsu.2019.03.004 |
17 |
LIU Y, YU P, PENG X, et al. Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis [J]. J Control Release, 2019, 304: 39-50. doi:10.1016/j.jconrel.2019.04.042
doi: 10.1016/j.jconrel.2019.04.042 |
18 |
REID I R, BILLINGTON E O. Drug therapy for osteoporosis in older adults [J]. Lancet, 2022, 399(10329): 1080-1092. doi:10.1016/s0140-6736(21)02646-5
doi: 10.1016/s0140-6736(21)02646-5 |
19 |
PASCHALIS E P, GAMSJAEGER S, HASSLER N, et al. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality [J]. Bone, 2017, 95: 41-46. doi:10.1016/j.bone.2016.11.002
doi: 10.1016/j.bone.2016.11.002 |
20 |
CHEN L R, KO N Y, CHEN K H. Medical Treatment for Osteoporosis: From Molecular to Clinical Opinions [J]. Int J Mol Sci, 2019, 20(9) : 2213. doi:10.3390/ijms20092213
doi: 10.3390/ijms20092213 |
21 |
CHOI D, CHOI S, CHANG J, et al. Exposure to oral bisphosphonates and risk of gastrointestinal cancer [J]. Osteoporos Int, 2020, 31(4): 775-782. doi:10.1007/s00198-020-05327-x
doi: 10.1007/s00198-020-05327-x |
22 |
CHEN Y J, JIA L H, HAN T H, et al. Osteoporosis treatment: current drugs and future developments [J]. Front Pharmacol, 2024, 15: 1456796. doi:10.3389/fphar.2024.1456796
doi: 10.3389/fphar.2024.1456796 |
23 |
TAO X, YIN L, XU L, et al. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections [J]. Pharmacol Res, 2018, 137: 259-269. doi:10.1016/j.phrs.2018.09.022
doi: 10.1016/j.phrs.2018.09.022 |
24 |
CAO G, HU S, NING Y, et al. Traditional Chinese medicine in osteoporosis: From pathogenesis to potential activity [J]. Front Pharmacol, 2024, 15: 1370900. doi:10.3389/fphar.2024.1370900
doi: 10.3389/fphar.2024.1370900 |
25 |
MUHAMMAD T, SAKHAWAT A, KHAN A A, et al. Aloperine in combination with therapeutic adenoviral vector synergistically suppressed the growth of non-small cell lung cancer [J]. J Cancer Res Clin Oncol, 2020, 146(4): 861-874. doi:10.1007/s00432-020-03157-2
doi: 10.1007/s00432-020-03157-2 |
26 |
YU H I, SHEN H C, CHEN S H, et al. Autophagy Modulation in Human Thyroid Cancer Cells following Aloperine Treatment [J]. Int J Mol Sci, 2019, 20(21): 5315. doi:10.3390/ijms20215315
doi: 10.3390/ijms20215315 |
27 |
LIU J S, HUO C Y, CAO H H, et al. Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway [J]. Phytomedicine, 2019, 61: 152843. doi:10.1016/j.phymed.2019.152843
doi: 10.1016/j.phymed.2019.152843 |
28 |
TAHIR M, ALI S, ZHANG W, et al. Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases [J]. Biomedicines, 2022, 10(4): 905. doi:10.3390/biomedicines10040905
doi: 10.3390/biomedicines10040905 |
29 |
CHEN X, ZHI X, PAN P, et al. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis [J]. FASEB J, 2017, 31(11): 4855-4865. doi:10.1096/fj.201700316r
doi: 10.1096/fj.201700316r |
30 |
JIANG C, MA Q, WANG S, et al. Oxymatrine Attenuates Osteoclastogenesis via Modulation of ROS-Mediated SREBP2 Signaling and Counteracts Ovariectomy-Induced Osteoporosis [J]. Front Cell Dev Biol, 2021, 9: 684007. doi:10.3389/fcell.2021.684007
doi: 10.3389/fcell.2021.684007 |
31 |
BRENT M B. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies [J]. Pharmacol Ther, 2023, 244: 108383. doi:10.1016/j.pharmthera.2023.108383
doi: 10.1016/j.pharmthera.2023.108383 |
32 |
YAMAMOTO H, ZHANG S, MIZUSHIMA N. Autophagy genes in biology and disease [J]. Nat Rev Genet, 2023, 24(6): 382-400. doi:10.1038/s41576-022-00562-w
doi: 10.1038/s41576-022-00562-w |
33 |
DERETIC V. Autophagy in inflammation, infection, and immunometabolism [J]. Immunity, 2021, 54(3): 437-453. doi:10.1016/j.immuni.2021.01.018
doi: 10.1016/j.immuni.2021.01.018 |
34 |
ZHANG L, GUO Y F, LIU Y Z, et al. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD [J]. J Bone Miner Res, 2010, 25(7): 1572-1580. doi:10.1002/jbmr.36
doi: 10.1002/jbmr.36 |
35 |
TANG N, ZHAO H, ZHANG H, et al. Effect of autophagy gene DRAM on proliferation, cell cycle, apoptosis, and autophagy of osteoblast in osteoporosis rats [J]. J Cell Physiol, 2019, 234(4): 5023-5032. doi:10.1002/jcp.27304
doi: 10.1002/jcp.27304 |
36 |
ZHANG L, ZHENG Y L, WANG R, et al. Exercise for osteoporosis: A literature review of pathology and mechanism [J]. Front Immunol, 2022, 13: 1005665. doi:10.3389/fimmu.2022.1005665
doi: 10.3389/fimmu.2022.1005665 |
37 |
LIU F, FANG F, YUAN H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation [J]. J Bone Miner Res, 2013, 28(11): 2414-2430. doi:10.1002/jbmr.1971
doi: 10.1002/jbmr.1971 |
38 |
TANG T, LIANG H, WEI W, et al. Aloperine targets lysosomes to inhibit late autophagy and induces cell death through apoptosis and paraptosis in glioblastoma [J]. Mol Biomed, 2023, 4(1): 42. doi:10.1186/s43556-023-00155-x
doi: 10.1186/s43556-023-00155-x |
39 |
OBENG E. Apoptosis (programmed cell death) and its signals-A review [J]. Braz J Biol, 2021, 81(4): 1133-1143. doi:10.1590/1519-6984.228437
doi: 10.1590/1519-6984.228437 |
40 |
BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death [J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. doi:10.1038/s41423-020-00630-3
doi: 10.1038/s41423-020-00630-3 |
41 |
RU J Y, WANG Y F. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases [J]. Cell Death Dis, 2020, 11(10): 846. doi:10.1038/s41419-020-03059-8
doi: 10.1038/s41419-020-03059-8 |
42 |
CHANDRA A, RAJAWAT J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics [J]. Int J Mol Sci, 2021, 22(7): 3553. doi:10.3390/ijms22073553
doi: 10.3390/ijms22073553 |
43 |
WEINSTEIN R S, MANOLAGAS S C. Apoptosis and osteoporosis [J]. Am J Med, 2000, 108(2): 153-164. doi:10.1016/s0002-9343(99)00420-9
doi: 10.1016/s0002-9343(99)00420-9 |
44 |
XU Z, WANG P, WANG Z, et al. ER-β accelerates the process of primary osteoporosis by promoting VEGFA-mediated apoptosis of osteoblasts[J]. Genomics, 2023, 115(6): 110743. doi:10.1016/j.ygeno.2023.110743
doi: 10.1016/j.ygeno.2023.110743 |
45 |
MORIISHI T, FUKUYAMA R, MIYAZAKI T, et al. Overexpression of BCLXL in Osteoblasts Inhibits Osteoblast Apoptosis and Increases Bone Volume and Strength[J]. J Bone Miner Res, 2016, 31(7): 1366-1380. doi:10.1002/jbmr.2808
doi: 10.1002/jbmr.2808 |
46 |
WONG S K, MOHAMAD N V, JAYUSMAN P A, et al. A Review on the Crosstalk between Insulin and Wnt/β-Catenin Signalling for Bone Health[J]. Int J Mol Sci, 2023, 24(15): 12441. doi:10.3390/ijms241512441
doi: 10.3390/ijms241512441 |
47 |
LIU J, XIAO Q, XIAO J, et al. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities [J]. Signal Transduct Target Ther, 2022, 7(1): 3. doi:10.1038/s41392-021-00762-6
doi: 10.1038/s41392-021-00762-6 |
48 |
VISWESWARAN M, POHL S, ARFUSO F, et al. Multi-lineage differentiation of mesenchymal stem cells-To Wnt, or not Wnt [J]. Int J Biochem Cell Biol, 2015, 68: 139-147. doi:10.1016/j.biocel.2015.09.008
doi: 10.1016/j.biocel.2015.09.008 |
49 |
CHENG B F, FENG X, GAO Y X, et al. Neural Cell Adhesion Molecule Regulates Osteoblastic Differentiation Through Wnt/β-Catenin and PI3K-Akt Signaling Pathways in MC3T3-E1 Cells [J]. Front Endocrinol (Lausanne), 2021, 12: 657953. doi:10.3389/fendo.2021.657953
doi: 10.3389/fendo.2021.657953 |
50 |
YU W, XIE C R, CHEN F C, et al. LGR5 enhances the osteoblastic differentiation of MC3T3-E1 cells through the Wnt/β-catenin pathway [J]. Exp Ther Med, 2021, 22(2): 889. doi:10.3892/etm.2021.10321
doi: 10.3892/etm.2021.10321 |
51 |
ZHAO Y, LIU J, ZHANG Y, et al. Mir-381-3p aggravates ovariectomy-induced osteoporosis by inhibiting osteogenic differentiation through targeting KLF5/Wnt/β-catenin signaling pathway [J]. J Orthop Surg Res, 2024, 19(1): 480. doi:10.1186/s13018-024-04992-6
doi: 10.1186/s13018-024-04992-6 |
52 |
LI R, RUAN Q, YIN F, et al. MiR-23b-3p promotes postmenopausal osteoporosis by targeting MRC2 and regulating the Wnt/β-catenin signaling pathway [J]. J Pharmacol Sci, 2021, 145(1): 69-78. doi:10.1016/j.jphs.2020.11.004
doi: 10.1016/j.jphs.2020.11.004 |
53 | XIAO X, AO M, XU F, et al. Effect of matrine against breast cancer by downregulating the vascular endothelial growth factor via the Wnt/β-catenin pathway [J]. Oncol Lett, 2018, 15(2): 1691-1697. |
[1] | 杨慧霞,丁宁,马润秋,李桂忠,郝银菊,马胜超,姜怡邓,白志刚. 环状RNA mmu_circ_0000818在地塞米松导致的MC3T3-E1细胞凋亡中的作用及机制[J]. 实用医学杂志, 2025, 41(4): 478-489. |
[2] | 李宗林,冯春林,刘欣,舒星铭,宋敏. CCCTC结合因子通过抵抗凋亡促进奥沙利铂相关胃癌药物耐受细胞形成[J]. 实用医学杂志, 2025, 41(4): 490-499. |
[3] | 卢钰芬,郑孝明,韦少娟,陈礼琴,徐彤彤,吕祥威. miR-483-3p 对乏氧/复氧诱导的心肌细胞凋亡和焦亡的作用研究[J]. 实用医学杂志, 2025, 41(3): 339-346. |
[4] | 罗珊,冯莹,范丹丹,郑雯鑫,郭兴荣,阮绪芝. 血管生成素样蛋白8敲除减轻脂多糖诱导的肝脏脂质沉积[J]. 实用医学杂志, 2024, 40(9): 1197-1203. |
[5] | 何伟,刘丽萍,卓静薇,张小冬,杨通,冯巨滨. 拮抗CC趋化因子受体5信号诱导肿瘤细胞凋亡并调节肿瘤微环境抑制肿瘤生长[J]. 实用医学杂志, 2024, 40(9): 1204-1210. |
[6] | 王方明,尚文璇,张靖雯,吉盈肖,李俐涛. 自噬调控小胶质细胞极化在缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(9): 1324-1330. |
[7] | 陈露露,罗萌,苏凯奇,高静,冯晓东. 内质网-线粒体互作在卒中后认知障碍中的研究进展[J]. 实用医学杂志, 2024, 40(7): 1023-1028. |
[8] | 李文昕,卢敏君,林莉,刘月琴,朱小兰. circRAF1调节人卵巢颗粒细胞的增殖与凋亡[J]. 实用医学杂志, 2024, 40(7): 910-917. |
[9] | 杨贞,江少如,陈小燕,陈晓琳,邓伟民,郭新宇. 经后增殖方对控制性超促排卵大鼠卵巢GDF9分泌及颗粒细胞凋亡的影响[J]. 实用医学杂志, 2024, 40(7): 918-923. |
[10] | 周颖,蒋大军,田勇,古雍翔,杨国辉. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志, 2024, 40(5): 608-614. |
[11] | 马润伟,穆纯杰,桂雯婷,邓瑶,赵敏章,柳民,宋怡. LncRNA SENCR靶向miR⁃206调控人主动脉夹层血管平滑肌细胞增殖和凋亡[J]. 实用医学杂志, 2024, 40(3): 302-308. |
[12] | 丁丽宏,耿世佳,王玉杰. 蟛蜞菊内酯对肺炎链球菌感染的肺泡上皮细胞凋亡及炎症因子分泌的调节作用[J]. 实用医学杂志, 2024, 40(3): 316-320. |
[13] | 石建梅,王茜茜,韦晓洁. 铁蛋白自噬在糖尿病及其相关并发症发病机制中的研究进展[J]. 实用医学杂志, 2024, 40(3): 417-422. |
[14] | 李梓光,韦存,赵磊,周其赵. 肌醇-三磷酸3-激酶B通过抑制线粒体自噬导致衰老睾丸间质细胞睾酮合成障碍[J]. 实用医学杂志, 2024, 40(24): 3427-3437. |
[15] | 孔春芳,李安娜,柯波,丁伟荣,刘婷婷,符环,张婷婷,金成豪,吴美. 6-姜辣素对人多发性骨髓瘤细胞的抑制作用及分子机制[J]. 实用医学杂志, 2024, 40(23): 3291-3297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||