1 |
XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. doi:10.1097/cm9.0000000000002108
doi: 10.1097/cm9.0000000000002108
|
2 |
LI Z, SHU X, LIU X, et al. Cellular and molecular mechanisms of chemoresistance for gastric cancer[J]. Int J Gen Med, 2024, 17: 3779-3788. doi:10.2147/ijgm.s473749
doi: 10.2147/ijgm.s473749
|
3 |
LEE J, MASHIMA T, KAWATA N, et al. Pharmacologic Targeting of Histone H3K27 Acetylation/BRD4-dependent Induction of ALDH1A3 for Early-phase Drug Tolerance of Gastric Cancer[J]. Cancer Res Commun, 2024, 4(5): 1307-1320. doi:10.1158/2767-9764.crc-23-0639
doi: 10.1158/2767-9764.crc-23-0639
|
4 |
KAWAKAMI R, MASHIMA T, KAWATA N, et al. Aldh1a3-mtor axis as a therapeutic target for anticancer drug-tolerant persister cells in gastric cancer[J]. Cancer Sci, 2020, 111(3): 962-973. doi:10.1111/cas.14316
doi: 10.1111/cas.14316
|
5 |
PU Y, LI L, PENG H, et al. Drug-tolerant persister cells in cancer: The cutting edges and future directions[J]. Nat Rev Clin Oncol, 2023, 20(11): 799-813. doi:10.1038/s41571-023-00815-5
doi: 10.1038/s41571-023-00815-5
|
6 |
SONG X, LAN Y, ZHENG X, et al. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells[J]. MedComm (2020), 2023, 4(5): e342. doi:10.1002/mco2.342
doi: 10.1002/mco2.342
|
7 |
DEBAUGNY R E, SKOK J A. Ctcf and ctcfl in cancer[J]. Curr Opin Genet Dev, 2020, 61: 44-52. doi:10.1016/j.gde.2020.02.021
doi: 10.1016/j.gde.2020.02.021
|
8 |
BOSE S, SAHA S, GOSWAMI H, et al. Involvement of ccctc-binding factor in epigenetic regulation of cancer[J]. Mol Biol Rep, 2023, 50(12): 10383-10398. doi:10.1007/s11033-023-08879-3
doi: 10.1007/s11033-023-08879-3
|
9 |
SUN L, HUANG C, ZHU M, et al. Gastric cancer mesenchymal stem cells regulate pd-l1-ctcf enhancing cancer stem cell-like properties and tumorigenesis[J]. Theranostics, 2020, 10(26): 11950-11962. doi:10.7150/thno.49717
doi: 10.7150/thno.49717
|
10 |
YU L, GAO Y, JI B, et al. CTCF-induced upregulation of LINC01207 promotes gastric cancer progression via miR-1301-3p/PODXL axis[J]. Dig Liver Dis, 2021, 53(4): 486-495. doi:10.1016/j.dld.2020.12.006
doi: 10.1016/j.dld.2020.12.006
|
11 |
中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)胃癌诊疗指南(2024版)[M]. 北京: 人民卫生出版社, 2024: 166.
|
12 |
CARA S, TANNOCK I F. Retreatment of patients with the same chemotherapy: Implications for clinical mechanisms of drug resistance[J]. Ann Oncol, 2001, 12(1): 23-27. doi:10.1023/a:1008389706725
doi: 10.1023/a:1008389706725
|
13 |
WANG P, KE B, MA G. Drug-tolerant persister cancer cells[J]. J Natl Cancer Cent, 2024, 4(1): 1-5. doi:10.1016/j.jncc.2023.12.002
doi: 10.1016/j.jncc.2023.12.002
|
14 |
ISHIDA K, ITO C, OHMORI Y, et al. Inhibition of pi3k suppresses propagation of drug-tolerant cancer cell subpopulations enriched by 5-fluorouracil[J]. Sci Rep, 2017, 7(1): 2262. doi:10.1038/s41598-017-02548-9
doi: 10.1038/s41598-017-02548-9
|
15 |
NAKAMURA A, MASHIMA T, LEE J, et al. Intratumor transforming growth factor-beta signaling with extracellular matrix-related gene regulation marks chemotherapy-resistant gastric cancer[J]. Biochem Biophys Res Commun, 2024, 721: 150108. doi:10.1016/j.bbrc.2024.150108
doi: 10.1016/j.bbrc.2024.150108
|
16 |
KIM T H, ABDULLAEV Z K, SMITH A D, et al. Analysis of the vertebrate insulator protein ctcf-binding sites in the human genome[J]. Cell, 2007, 128(6): 1231-1245. doi:10.1016/j.cell.2006.12.048
doi: 10.1016/j.cell.2006.12.048
|
17 |
ZHOU T, CHEN Z, CHEN Y, et al. Chronic stress promotes non-small cell lung cancer (nsclc) progression through circmboat2 upregulation mediated by ctcf[J]. Cancer Gene Ther, 2024, 31(11):1721-1733. doi:10.1038/s41417-024-00830-3
doi: 10.1038/s41417-024-00830-3
|
18 |
KAKANI P, DHAMDHERE S G, PANT D, et al. Hypoxia-induced ctcf promotes emt in breast cancer[J]. Cell Rep, 2024, 43(7): 114367. doi:10.1016/j.celrep.2024.114367
doi: 10.1016/j.celrep.2024.114367
|
19 |
DONG H, LIU Q, CHEN C, et al. LncRNA OGFRP1 promotes angiogenesis and epithelial-mesenchymal transition in colorectal cancer cells through miR-423-5p/CTCF axis[J]. Immunobiology, 2022, 227(2): 152176. doi:10.1016/j.imbio.2022.152176
doi: 10.1016/j.imbio.2022.152176
|
20 |
WU H, XIA L, SUN L, et al. Rpl35a drives ovarian cancer progression by promoting the binding of yy1 to ctcf promoter[J]. J Cell Mol Med, 2024, 28(6): e18115. doi:10.1111/jcmm.18115
doi: 10.1111/jcmm.18115
|
21 |
ZHAN H, XIAO J, WANG P, et al. Exosomal CTCF Confers Cisplatin Resistance in Osteosarcoma by Promoting Autophagy via the IGF2-AS/miR-579-3p/MSH6 Axis[J]. J Oncol, 2022, 2022: 9390611. doi:10.1155/2022/9390611
doi: 10.1155/2022/9390611
|
22 |
聂微, 严芝强, 成兴真, 等. 奥沙利铂通过自噬诱导胃癌细胞耐药的机制[J]. 实用医学杂志, 2022, 38(7): 828-835.
|
23 |
LI J, HUANG K, HU G, et al. An alternative ctcf isoform antagonizes canonical ctcf occupancy and changes chromatin architecture to promote apoptosis[J]. Nat Commun, 2019, 10(1): 1535. doi:10.1038/s41467-019-08949-w
doi: 10.1038/s41467-019-08949-w
|
24 |
DOCQUIER F, FARRAR D, D'ARCY V, et al. Heightened expression of ctcf in breast cancer cells is associated with resistance to apoptosis[J]. Cancer Res, 2005, 65(12): 5112-5122. doi:10.1158/0008-5472.can-03-3498
doi: 10.1158/0008-5472.can-03-3498
|
25 |
LI M, WANG D, HE J, et al. Bcl-x(l): A multifunctional anti-apoptotic protein[J]. Pharmacol Res, 2020, 151: 104547. doi:10.1016/j.phrs.2019.104547
doi: 10.1016/j.phrs.2019.104547
|
26 |
PARK H, CHO S Y, KIM H, et al. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer[J]. Proc Natl Acad Sci U S A, 2015, 112(40): 12492-12497. doi:10.1073/pnas.1507491112
doi: 10.1073/pnas.1507491112
|
27 |
王晓通, 吴锟, 李雷, 等. Shrna-siva1慢病毒载体的构建及其对胃癌细胞耐药性的影响[J]. 实用医学杂志, 2020, 36(3): 282-287.
|
28 |
WEI Y, ZHANG L, WANG C, et al. Anti-apoptotic protein bcl-xl as a therapeutic vulnerability in gastric cancer[J]. Animal Model Exp Med, 2023, 6(3): 245-254. doi:10.1002/ame2.12330
doi: 10.1002/ame2.12330
|