1 |
胡盛寿, 王增武. 《中国心血管健康与疾病报告2022》概述[J]. 中国心血管病研究, 2023, 21(7):577-600.
|
2 |
PICHE M E, TCHERNOF A, DESPRES J P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases[J]. Circ Res, 2020, 126(11):1477-1500. doi:10.1161/circresaha.120.316101
doi: 10.1161/circresaha.120.316101
|
3 |
叶健华,赵玉钏. 2型糖尿病缓解标准与治疗策略[J]. 实用医学杂志, 2023, 39(14):1729-1732. doi:10.3969/j.issn.1006-5725.2023.14.001
doi: 10.3969/j.issn.1006-5725.2023.14.001
|
4 |
TANG W H, STITHAM J, JIN Y, et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets[J]. Circulation, 2014, 129(15):1598-1609. doi:10.1161/circulationaha.113.005224
doi: 10.1161/circulationaha.113.005224
|
5 |
EL-HAOUARI M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients[J]. Curr Med Chem, 2019, 26(22):4145-4165. doi:10.2174/0929867324666171005114456
doi: 10.2174/0929867324666171005114456
|
6 |
SNIR O, WILSGARD L, LATYSHEVA N, et al. Plasma levels of platelet-derived microvesicles are associated with risk of future venous thromboembolism[J]. J Thromb Haemost, 2022, 20(4):899-908. doi:10.1111/jth.15638
doi: 10.1111/jth.15638
|
7 |
LEE S H, DU J, STITHAM J, et al. Inducing mitophagy in diabetic platelets protects against severe oxidative stress[J]. EMBO Mol Med, 2016, 8(7):779-795. doi:10.15252/emmm.201506046
doi: 10.15252/emmm.201506046
|
8 |
JOSEFSSON E C. Platelet intrinsic apoptosis[J]. Thromb Res, 2023, 231:206-213. doi:10.1016/j.thromres.2022.11.024
doi: 10.1016/j.thromres.2022.11.024
|
9 |
张承启,李易姿,吴琪俊,等. 膳食多样化与代谢综合征关系的研究进展[J]. 实用医学杂志, 2022, 38(15):1970-1974. doi:10.3969/j.issn.1006-5725.2022.15.022
doi: 10.3969/j.issn.1006-5725.2022.15.022
|
10 |
MEN X, HAN X, OH G, et al. Plant sources, extraction techniques, analytical methods, bioactivity, and bioavailability of sulforaphane:a review[J]. Food Sci Biotechnol, 2024, 33(3):539-556. doi:10.1007/s10068-023-01434-7
doi: 10.1007/s10068-023-01434-7
|
11 |
MAGNER M, THOROVA K, ZUPOVA V, et al. Sulforaphane Treatment in Children with Autism:A Prospective Randomized Double-Blind Study[J]. Nutrients, 2023, 15(3):718.
|
12 |
刘小明,周葳,杨补. 莱菔硫烷抑制前列腺癌细胞增殖及迁移的实验研究[J]. 实用医学杂志, 2019, 35(9):1383-1387.
|
13 |
ZHOU X, HUANG X, WU C, et al. Sulforaphane attenuates glycoprotein VI-mediated platelet mitochondrial dysfunction through up-regulating the cAMP/PKA signaling pathway in vitro and in vivo[J]. Food Funct, 2023, 14(8):3613-3629. doi:10.1039/d2fo03958c
doi: 10.1039/d2fo03958c
|
14 |
李玮琪, 马永洁, 黄新惠, 等. 莱菔硫烷对ox-LDL诱导血小板活化的抑制作用[J].南京医科大学学报(自然科学版), 2023, 43(5):684-690.
|
15 |
LI W, MA Y, ZHANG C, et al. Tetrahydrocurcumin Downregulates MAPKs/cPLA2 Signaling and Attenuates Platelet Thromboxane A2 Generation, Granule Secretion, and Thrombus Growth[J]. Thromb Haemost, 2022, 122(5):739-754. doi:10.1055/s-0041-1735192
doi: 10.1055/s-0041-1735192
|
16 |
马永洁, 李玮琪, 伍春婷, 等. 三七总皂苷对ox-LDL诱导血小板凋亡的保护作用及机制研究[J]. 大理大学学报, 2023, 8(2):1-7.
|
17 |
曲云霄,蒋知新,韩腾龙,等. 血小板参数及活化标志物与2型糖尿病患者颈动脉内膜中层厚度的相关性[J]. 实用医学杂志, 2016, 32(8):1250-1253.
|
18 |
ARRIAGADA-PETERSEN C, FERNANDEZ P, GOMEZ M, et al. Effect of advanced glycation end products on platelet activation and aggregation:a comparative study of the role of glyoxal and methylglyoxal[J]. Platelets, 2021, 32(4):507-515. doi:10.1080/09537104.2020.1767770
doi: 10.1080/09537104.2020.1767770
|
19 |
INDANA H A, PUSPITAWATI I, MAYASARI D S, et al. Association of Acute Hyperglycemia and Diabetes Mellitus with Platelet-derived Microparticle(PDMP) Levels During Acute Myocardial Infarction[J]. J ASEAN Fed Endocr Soc, 2023, 38(2):35-40. doi:10.15605/jafes.038.02.03
doi: 10.15605/jafes.038.02.03
|
20 |
RIVAS-GARCIA L, QUINTANA-NAVARRO G M, ALCALA-DIAZ J F, et al. Association between Diet Quality and Risk of Type 2 Diabetes Mellitus in Patients with Coronary Heart Disease:Findings from the CORDIOPREV Study[J]. Nutrients, 2024, 16(8):1249. doi:10.3390/nu16081249
doi: 10.3390/nu16081249
|
21 |
WEI X, ZOU H, ZHANG T, et al. Gestational Diabetes Mellitus:What Can Medical Nutrition Therapy Do?[J]. Nutrients, 2024, 16(8):1217. doi:10.3390/nu16081217
doi: 10.3390/nu16081217
|
22 |
BAHADORAN Z, TOHIDI M, NAZERI P, et al. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial[J]. Int J Food Sci Nutr, 2012, 63(7):767-771. doi:10.3109/09637486.2012.665043
doi: 10.3109/09637486.2012.665043
|
23 |
MTHEMBU S X H, MAZIBUKO-MBEJE S E, MOETLEDIWA M T, et al. Sulforaphane:A nutraceutical against diabetes-related complications[J]. Pharmacol Res, 2023, 196:106918. doi:10.1016/j.phrs.2023.106918
doi: 10.1016/j.phrs.2023.106918
|
24 |
MOHAMADI N, BARADARAN RAHIMI V, FADAEI M R, et al. A mechanistic overview of sulforaphane and its derivatives application in diabetes and its complications[J]. Inflammopharmacology, 2023, 31(6):2885-2899. doi:10.1007/s10787-023-01373-z
doi: 10.1007/s10787-023-01373-z
|
25 |
PAUL M, HEMSHEKHAR M, KEMPARAJU K, et al. Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity[J]. Free Radic Biol Med, 2019, 130:196-205. doi:10.1016/j.freeradbiomed.2018.10.453
doi: 10.1016/j.freeradbiomed.2018.10.453
|
26 |
YA F, LI K, CHEN H, et al. Protocatechuic Acid Protects Platelets from Apoptosis via Inhibiting Oxidative Stress-Mediated PI3K/Akt/GSK3beta Signaling[J]. Thromb Haemost, 2021, 121(7):931-943. doi:10.1055/s-0040-1722621
doi: 10.1055/s-0040-1722621
|
27 |
LUANG-IN V, NARBAD A, NUENO-PALOP C, et al. The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria[J]. Mol Nutr Food Res, 2014, 58(4):875-883. doi:10.1002/mnfr.201300377
doi: 10.1002/mnfr.201300377
|
28 |
VEERANKI O L, BHATTACHARYA A, MARSHALL J R, et al. Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli:implications for cancer prevention[J]. Br J Nutr, 2013, 109(1):25-32. doi:10.1017/s0007114512000657
doi: 10.1017/s0007114512000657
|
29 |
HU R, HEBBAR V, KIM B R, et al. In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat[J]. J Pharmacol Exp Ther, 2004, 310(1):263-271. doi:10.1124/jpet.103.064261
doi: 10.1124/jpet.103.064261
|
30 |
NEGRETTE-GUZMAN M, HUERTA-YEPEZ S, TAPIA E, et al. Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis[J]. Free Radic Biol Med, 2013, 65:1078-1089. doi:10.1016/j.freeradbiomed.2013.08.182
doi: 10.1016/j.freeradbiomed.2013.08.182
|
31 |
BARALIC K, ZIVANOVIC J, MARIC D, et al. Sulforaphane-A Compound with Potential Health Benefits for Disease Prevention and Treatment: Insights from Pharmacological and Toxicological Experimental Studies[J]. Antioxidants(Basel), 2024, 13(2):147.
|
32 |
CHUANG W Y, KUNG P H, KUO C Y, et al. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway[J]. Thromb Haemost, 2013, 109(6):1120-1130. doi:10.1160/th12-09-0636
doi: 10.1160/th12-09-0636
|