1 |
王英全, 梁景宏, 贾瑞霞, 等. 2020-2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019,2(1):289-298. doi:10.3969/j.issn.2096-5516.2019.01.012
doi: 10.3969/j.issn.2096-5516.2019.01.012
|
2 |
GRIFFITHS J, GRANT S G N. Synapse pathology in Alzheimer's disease[J]. Semin Cell Dev Biol. 2023,139:13-23. doi:10.1016/j.semcdb.2022.05.028
doi: 10.1016/j.semcdb.2022.05.028
|
3 |
LEE R L, FUNK K E. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer's disease[J]. Front Aging Neurosci, 2023,15:1144036. doi:10.3389/fnagi.2023.1144036
doi: 10.3389/fnagi.2023.1144036
|
4 |
NEHRA G, BAUER B, HARTZ A M S. Blood-brain barrier leakage in Alzheimer's disease: from discovery to clinical relevance[J]. Pharmacol Ther, 2022,234:108119. doi:10.1016/j.pharmthera.2022.108119
doi: 10.1016/j.pharmthera.2022.108119
|
5 |
SHEN J, XU G, ZHU R, et al. PDGFR-β restores blood-brain barrier functions in a mouse model of focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2019,39(8):1501-1515. doi:10.1177/0271678x18769515
doi: 10.1177/0271678x18769515
|
6 |
GLENNER G G. Congophilic microangiopathy in the pathogenesis of Alzheimer's syndrome (presenile dementia) [J]. Med Hypotheses, 1979,5(11):1231-1236. doi:10.1016/0306-9877(79)90005-7
doi: 10.1016/0306-9877(79)90005-7
|
7 |
MOON Y, LIM C, KIM Y, et al. Sex-related differences in regional blood-brain barrier integrity in non-demented elderly subjects[J]. Int J Mol Sci, 2021,22(6):2860. doi:10.3390/ijms22062860
doi: 10.3390/ijms22062860
|
8 |
UCHIDA Y, KAN H, SAKURAI K, et al. Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias[J]. Front Aging Neurosci, 2023,15:1111448. doi:10.3389/fnagi.2023.1111448
doi: 10.3389/fnagi.2023.1111448
|
9 |
BRUNO M, BONOMI C G, RICCI F, et al. Blood-brain barrier permeability is associated with different neuroinflammatory profiles in Alzheimer's disease[J]. Eur J Neurol, 2023,31(1):e16095. doi:10.1111/ene.16095
doi: 10.1111/ene.16095
|
10 |
MONTEIRO A R, BARBOSA D J, REMIÃO F, et al. Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs[J]. Biochem Pharmacol, 2023,211:115522. doi:10.1016/j.bcp.2023.115522
doi: 10.1016/j.bcp.2023.115522
|
11 |
ITO S, YAGI R, OGATA S, et al. Proteomic alterations in the brain and blood-brain barrier during brain Aβ accumulation in an APP knock-in mouse model of Alzheimer's disease[J]. Fluids Barriers CNS, 2023,20(1):66. doi:10.1186/s12987-023-00466-9
doi: 10.1186/s12987-023-00466-9
|
12 |
MONTAGNE A, BARNES S R, SWEENEY M D, et al. blood-brain barrier breakdown in the aging human hippocampus[J]. Neuron, 2015,85(2):296-302. doi:10.1016/j.neuron.2014.12.032
doi: 10.1016/j.neuron.2014.12.032
|
13 |
BUTTS B, HUANG H, HU W T, et al. sPDGFRβ and neuroinflammation are associated with AD biomarkers and differ by race: The ASCEND Study[J]. Alzheimers Dement, 2023,20(2):1175-1189. doi:10.1002/alz.13457
doi: 10.1002/alz.13457
|
14 |
TING K K, COLEMAN P, KIM H J, et al. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models[J]. Geroscience, 2023,45(6):3307-3331. doi:10.1007/s11357-023-00927-x
doi: 10.1007/s11357-023-00927-x
|
15 |
EISENMENGER L B, PERET A, FAMAKIN B M, et al. Vascular contributions to Alzheimer's disease[J]. Transl Res, 2023,254:41-53. doi:10.1016/j.trsl.2022.12.003
doi: 10.1016/j.trsl.2022.12.003
|
16 |
CERASUOLO M, PAPA M, COLANGELO A M, et al. Alzheimer's Disease from the amyloidogenic theory to the puzzling crossroads between vascular, metabolic and energetic maladaptive plasticity[J]. Biomedicines, 2023,11(3):861. doi:10.3390/biomedicines11030861
doi: 10.3390/biomedicines11030861
|
17 |
SANTISTEBAN M M, IADECOLA C, CARNEVALE D. Hypertension, neurovascular dysfunction, and cognitive impairment[J]. Hypertension, 2023,80(1):22-34. doi:10.1161/hypertensionaha.122.18085
doi: 10.1161/hypertensionaha.122.18085
|
18 |
赵红,李潇,王翠.关注少突胶质细胞:阿尔茨海默病治疗的新靶点[J].实用医学杂志, 2023, 39(13):1595-1599. doi:10.3969/j.issn.1006-5725.2023.13.001
doi: 10.3969/j.issn.1006-5725.2023.13.001
|
19 |
PETRUSHANKO I Y, MITKEVICH V A, MAKAROV A A. Effect of β-amyloid on blood-brain barrier properties and function[J]. Biophys Rev, 2023,15(2):183-197. doi:10.1007/s12551-023-01052-x
doi: 10.1007/s12551-023-01052-x
|
20 |
SHI H, KORONYO Y, FUCHS D T, et al. Retinal arterial Aβ40 deposition is linked with tight junction loss and cerebral amyloid angiopathy in MCI and AD patients[J]. Alzheimers Dement, 2023,19(11):5185-5197. doi:10.1002/alz.13086
doi: 10.1002/alz.13086
|
21 |
CUSTODIA A, ARAMBURU-NÚÑEZ M, RODRÍGUEZ-ARRIZABALAGA M, et al. Biomarkers assessing endothelial dysfunction in Alzheimer's Disease[J]. Cells, 2023,12(6):962. doi:10.3390/cells12060962
doi: 10.3390/cells12060962
|
22 |
ALGHANIMY A, MARTIN C, GALLAGHER L, et al. The effect of a novel AQP4 facilitator, TGN-073, on glymphatic transport captured by diffusion MRI and DCE-MRI[J]. PLoS One, 2023,18(3):e0282955. doi:10.1371/journal.pone.0282955
doi: 10.1371/journal.pone.0282955
|
23 |
SELF W K, HOLTZMAN D M. Emerging diagnostics and therapeutics for Alzheimer disease[J]. Nat Med, 2023,29(9):2187-2199. doi:10.1038/s41591-023-02505-2
doi: 10.1038/s41591-023-02505-2
|
24 |
MUSAEUS C S, GLEERUP H S, HASSELBALCH S G, et al. Progression of blood-brain barrier leakage in patients with Alzheimer's Disease as measured with the cerebrospinal fluid/plasma albumin ratio over time[J]. J Alzheimers Dis Rep, 2023,7(1):535-541. doi:10.3233/adr-230016
doi: 10.3233/adr-230016
|
25 |
SCHLIEP G, FELGENHAUER K. Serum-CSF protein gradients, the blood-GSF barrier and the local immune response[J]. J Neurol, 1978,218(2):77-96. doi:10.1007/bf02402169
doi: 10.1007/bf02402169
|
26 |
KRISHNAN P, MURPHY A, AVIV R I. CT-based techniques for brain perfusion[J]. Top Magn Reson Imaging, 2017,26(3):113-119. doi:10.1097/rmr.0000000000000129
doi: 10.1097/rmr.0000000000000129
|
27 |
VOORTER P H M, VAN DINTHER M, JANSEN W J, et al. Blood-brain barrier disruption and perivascular spaces in small vessel disease and neurodegenerative diseases: a review on MRI methods and insights[J]. J Magn Reson Imaging, 2024,59(2):397-411. doi:10.1002/jmri.28989
doi: 10.1002/jmri.28989
|
28 |
MONTAGNE A, NATION D A, SAGARE A P, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline[J]. Nature, 2020,581(7806):71-76. doi:10.1038/s41586-020-2247-3
doi: 10.1038/s41586-020-2247-3
|
29 |
KNOX E G, ABURTO M R, CLARKE G, et al. The blood-brain barrier in aging and neurodegeneration[J]. Mol Psychiatry, 2022,27(6):2659-2673. doi:10.1038/s41380-022-01511-z
doi: 10.1038/s41380-022-01511-z
|
30 |
HUANG P, ZHANG M. Magnetic resonance imaging studies of neurodegenerative disease: from methods to translational research[J]. Neurosci Bull, 2023,39(1):99-112. doi:10.1007/s12264-022-00905-x
doi: 10.1007/s12264-022-00905-x
|
31 |
POLIAKOVA T, LEVIN O, ARABLINSKIY A, et al. Cerebral microbleeds in early Alzheimer's disease[J]. J Neurol, 2016,263(10):1961-1968. doi:10.1007/s00415-016-8220-2
doi: 10.1007/s00415-016-8220-2
|
32 |
VÁZQUEZ-JUSTES D, AGUIRREGOICOA I, FERNANDEZ L, et al. Clinical impact of microbleeds in patients with Alzheimer's disease[J]. BMC Geriatr, 2022,22(1):774. doi:10.1186/s12877-022-03456-y
doi: 10.1186/s12877-022-03456-y
|
33 |
SCHOEMAKER D, ZANON ZOTIN M C, CHEN K, et al. White matter hyperintensities are a prominent feature of autosomal dominant Alzheimer's disease that emerge prior to dementia[J]. Alzheimers Res Ther, 2022,14(1):89. doi:10.1186/s13195-022-01030-7
doi: 10.1186/s13195-022-01030-7
|
34 |
BRUNDEL M, HERINGA S M, DE BRESSER J, et al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer's disease[J]. J Alzheimers Dis, 2012,31(2):259-263. doi:10.3233/jad-2012-120364
doi: 10.3233/jad-2012-120364
|
35 |
中国痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会.中国阿尔茨海默病一级预防指南[J].中华医学杂志, 2020, 100(35):2721-2735. doi:10.3760/cma.j.cn112137-20200702-02017
doi: 10.3760/cma.j.cn112137-20200702-02017
|
36 |
PATRIZIA CAVAZZONI, FDA Center for Drug Evaluation and Research. FDA′s decision to approve new treatment for Alzheimer′s Disease[EB/OL].(2021-06-07)[2023-04-24]. .
|
37 |
BUDD HAEBERLEIN S, AISEN P S, BARKHOF F, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer's Disease[J]. J Prev Alzheimers Dis, 2022,9(2):197-210.
|
38 |
SWANSON C J, ZHANG Y, DHADDA S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody[J]. Alzheimers Res Ther, 2021,13(1):80. doi:10.1186/s13195-022-00995-9
doi: 10.1186/s13195-022-00995-9
|
39 |
MINTUN M A, LO A C, DUGGAN EVANS C, et al. Donanemab in early Alzheimer's Disease[J]. N Engl J Med, 2021,384(18):1691-1704. doi:10.1056/nejmoa2100708
doi: 10.1056/nejmoa2100708
|
40 |
ZHOU C, ZHANG J, LUO X, et al. Sodium oligomannate electrostatically binds to Aβ and blocks its aggregation[J]. J Phys Chem B, 2023,127(9):1983-1994. doi:10.1021/acs.jpcb.3c00280
doi: 10.1021/acs.jpcb.3c00280
|
41 |
XIAO S, CHAN P, WANG T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia[J]. Alzheimers Res Ther, 2021,13(1):62.
|
42 |
YANG A C, VEST R T, KERN F, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer's risk[J]. Nature, 2022,603(7903):885-892. doi:10.1038/s41586-021-04369-3
doi: 10.1038/s41586-021-04369-3
|