实用医学杂志 ›› 2024, Vol. 40 ›› Issue (2): 278-282.doi: 10.3969/j.issn.1006-5725.2024.02.026
• 综述 • 上一篇
收稿日期:
2023-08-10
出版日期:
2024-01-25
发布日期:
2024-03-06
通讯作者:
李小悦
E-mail:euyeuy1983@126.com
基金资助:
Lili TANG,Xinyu WANG,Jie ZHANG,Yue ZHAO,Xiaoyue LI()
Received:
2023-08-10
Online:
2024-01-25
Published:
2024-03-06
Contact:
Xiaoyue LI
E-mail:euyeuy1983@126.com
摘要:
急性肾损伤因高发病率、高病死率、高治疗费用已然成为全球性重要公共健康问题,其发病机制复杂、治疗策略有限,深入探索其病理生理机制、寻找临床治疗的潜在靶点具有重要意义。N6-甲基腺嘌呤(m6A)甲基化是真核生物中最为普遍和高度保守的表观遗传修饰,是由m6A甲基转移酶、去甲基化酶和阅读蛋白共同调控RNA的剪接、出核、翻译、稳定性和高级结构的动态可逆过程。研究表明m6A甲基化修饰在急性肾损伤的发生发展中发挥重要调节作用,有望成为治疗急性肾损伤的有效靶点。本文就m6A在急性肾损伤中的调控作用及未来可能的研究方向进行综述。
中图分类号:
唐立丽,王昕宇,张杰,赵悦,李小悦. m6A甲基化修饰在急性肾损伤中的研究进展[J]. 实用医学杂志, 2024, 40(2): 278-282.
Lili TANG,Xinyu WANG,Jie ZHANG,Yue ZHAO,Xiaoyue LI. Research progress on the relationship between m6A methylation modification and acute kidney injury[J]. The Journal of Practical Medicine, 2024, 40(2): 278-282.
1 |
RONCO C, BELLOMO R, KELLUM J A. Acute kidney injury[J]. Lancet, 2019,394(10212):1949-1964. doi:10.1016/s0140-6736(19)32563-2
doi: 10.1016/s0140-6736(19)32563-2 |
2 |
HOSTE E A, BAGSHAW S M, BELLOMO R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015,41(8):1411-1423. doi:10.1007/s00134-015-3934-7
doi: 10.1007/s00134-015-3934-7 |
3 |
FU Y, DOMINISSINI D, RECHAVI G, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation[J]. Nat Rev Genet, 2014,15(5):293-306. doi:10.1038/nrg3724
doi: 10.1038/nrg3724 |
4 |
SU S, LI S, DENG T, et al. Cryo-EM structures of human m(6)A writer complexes[J]. Cell Res, 2022,32(11):982-994. doi:10.1038/s41422-022-00725-8
doi: 10.1038/s41422-022-00725-8 |
5 |
WANG X, FENG J, XUE Y, et al. Corrigendum: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2017,542(7640):260. doi:10.1038/nature21073
doi: 10.1038/nature21073 |
6 |
HUANG Q, MO J, LIAO Z, et al. The RNA m(6)A writer WTAP in diseases: structure, roles, and mechanisms[J]. Cell Death Dis, 2022,13(10):852. doi:10.1038/s41419-022-05268-9
doi: 10.1038/s41419-022-05268-9 |
7 |
PATIL D P, CHEN C K, PICKERING B F, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016,537(7620):369-373. doi:10.1038/nature19342
doi: 10.1038/nature19342 |
8 |
JIANG X, LIU B, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021,6(1):74. doi:10.1038/s41392-020-00450-x
doi: 10.1038/s41392-020-00450-x |
9 |
FANG X, LI M, YU T, et al. Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology[J]. Genes Dis, 2020,7(4):585-597. doi:10.1016/j.gendis.2020.06.011
doi: 10.1016/j.gendis.2020.06.011 |
10 |
JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011,7(12):885-887. doi:10.1038/nchembio.687
doi: 10.1038/nchembio.687 |
11 |
QU J, YAN H, HOU Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022,15(1):8. doi:10.1186/s13045-022-01224-4
doi: 10.1186/s13045-022-01224-4 |
12 |
CHEN Z, QI M, SHEN B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Res, 2019,47(5):2533-2545. doi:10.1093/nar/gky1250
doi: 10.1093/nar/gky1250 |
13 |
RIES R J, ZACCARA S, KLEIN P, et al. m(6)A enhances the phase separation potential of mRNA[J]. Nature, 2019,571(7765):424-428. doi:10.1038/s41586-019-1374-1
doi: 10.1038/s41586-019-1374-1 |
14 |
CHEN L, GAO Y, XU S, et al. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms[J]. Front Immunol, 2023,14:1162607. doi:10.3389/fimmu.2023.1162607
doi: 10.3389/fimmu.2023.1162607 |
15 |
WIDAGDO J, ANGGONO V, WONG J J. The multifaceted effects of YTHDC1-mediated nuclear m(6)A recognition[J]. Trends Genet, 2022,38(4):325-332. doi:10.1016/j.tig.2021.11.005
doi: 10.1016/j.tig.2021.11.005 |
16 |
HSU P J, ZHU Y, MA H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017,27(9):1115-1127. doi:10.1038/cr.2017.99
doi: 10.1038/cr.2017.99 |
17 |
HUANG H, WENG H, SUN W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018,20(3):285-295. doi:10.1038/s41556-018-0045-z
doi: 10.1038/s41556-018-0045-z |
18 |
ALARCON C R, GOODARZI H, LEE H, et al. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events[J]. Cell, 2015,162(6):1299-1308. doi:10.1016/j.cell.2015.08.011
doi: 10.1016/j.cell.2015.08.011 |
19 |
LIU N, DAI Q, ZHENG G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015,518(7540):560-564. doi:10.1038/nature14234
doi: 10.1038/nature14234 |
20 |
MEYER K D, PATIL D P, ZHOU J, et al. 5' UTR m(6)A Promotes Cap-Independent Translation[J]. Cell, 2015,163(4):999-1010. doi:10.1016/j.cell.2015.10.012
doi: 10.1016/j.cell.2015.10.012 |
21 |
SUN Y, JIN D, ZHANG Z, et al. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential[J]. Biochim Biophys Acta Gene Regul Mech, 2023,1866(4):194967. doi:10.1016/j.bbagrm.2023.194967
doi: 10.1016/j.bbagrm.2023.194967 |
22 |
李晶,陆芹芹,崔艳飞. 血清PGC-1α水平在脓毒症致急性肾损伤诊断中的价值[J]. 实用医学杂志, 2023,39(4):471-475. doi:10.3969/j.issn.1006-5725.2023.04.015
doi: 10.3969/j.issn.1006-5725.2023.04.015 |
23 |
LIU B, AO S, TAN F, et al. Transcriptomic analysis and laboratory experiments reveal potential critical genes and regulatory mechanisms in sepsis-associated acute kidney injury[J]. Ann Transl Med, 2022,10(13):737. doi:10.21037/atm-22-845
doi: 10.21037/atm-22-845 |
24 |
WANG J N, WANG F, KE J, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms[J]. Sci Transl Med, 2022,14(640):eabk2709. doi:10.1126/scitranslmed.abk2709
doi: 10.1126/scitranslmed.abk2709 |
25 |
PAN J, XIE Y, LI H, et al. mmu-lncRNA 121686/hsa-lncRNA 520657 induced by METTL3 drive the progression of AKI by targeting miR-328-5p/HtrA3 signaling axis[J]. Mol Ther, 2022,30(12):3694-3713. doi:10.1016/j.ymthe.2022.07.014
doi: 10.1016/j.ymthe.2022.07.014 |
26 |
HU C, ZHANG B, ZHAO S. METTL3-mediated N6-methyladenosine modification stimulates mitochondrial damage and ferroptosis of kidney tubular epithelial cells following acute kidney injury by modulating the stabilization of MDM2-p53-LMNB1 axis[J]. Eur J Med Chem, 2023,259:115677. doi:10.1016/j.ejmech.2023.115677
doi: 10.1016/j.ejmech.2023.115677 |
27 |
ZhU S, LU Y. Dexmedetomidine Suppressed the Biological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5[J]. Inflammation, 2020,43(6):2256-2263. doi:10.1007/s10753-020-01293-y
doi: 10.1007/s10753-020-01293-y |
28 |
YU F, ZHU A C, LIU S, et al. RBM33 is a unique m(6)A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity[J]. Mol Cell, 2023,83(12):2003-2019. doi:10.1016/j.molcel.2023.05.010
doi: 10.1016/j.molcel.2023.05.010 |
29 |
MAO Y, JIANG F, XU X J, et al. Inhibition of IGF2BP1 attenuates renal injury and inflammation by alleviating m6A modifications and E2F1/MIF pathway[J]. Int J Biol Sci, 2023,19(2):593-609. doi:10.7150/ijbs.78348
doi: 10.7150/ijbs.78348 |
30 |
ZHANG S, GUAN X, LIU W, et al. YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis[J]. Cell Death Discov, 2022,8(1):244. doi:10.1038/s41420-022-00872-2
doi: 10.1038/s41420-022-00872-2 |
31 |
邹丛,胡红林,涂云明,等. 吡格列酮保护糖尿病大鼠肾缺血再灌注损伤的实验研究[J]. 实用医学杂志, 2020,36(4):434-439. doi:10.3969/j.issn.1006-5725.2020.04.003
doi: 10.3969/j.issn.1006-5725.2020.04.003 |
32 |
陈康,周向军,程帆. N6-甲基腺苷甲基化与肾脏缺血再灌注损伤关系的研究进展[J]. 中华实验外科杂志, 2021,38(12):2542-2544. doi:10.3760/cma.j.cn421213-20210225-00167
doi: 10.3760/cma.j.cn421213-20210225-00167 |
33 |
MENG F, LIU Y, CHEN Q, et al. METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J]. Am J Physiol Renal Physiol, 2020,319(5):F839-F847. doi:10.1152/ajprenal.00222.2020
doi: 10.1152/ajprenal.00222.2020 |
34 |
XU Y, YUAN X D, WU J J, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1[J]. J Cell Biochem, 2020,121(1):524-533. doi:10.1002/jcb.29258
doi: 10.1002/jcb.29258 |
35 |
XING J, HE Y C, WANG K Y, et al. Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP[J]. FASEB J, 2022,36(2):e22144. doi:10.1096/fj.202100172rr
doi: 10.1096/fj.202100172rr |
36 |
熊冰瑶,康志娟,李志辉. 脂肪量和肥胖相关蛋白在人肾小管上皮细胞缺血再灌注损伤中的作用[J]. 中华实用儿科临床杂志, 2022,37(8):626-630. doi:10.3760/cma.j.cn101070-20210116-00070
doi: 10.3760/cma.j.cn101070-20210116-00070 |
37 |
ZHUANG C, ZHUANG C, LUO X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1alpha signalling axis[J]. J Cell Mol Med, 2019,23(3):2163-2173. doi:10.1111/jcmm.14128
doi: 10.1111/jcmm.14128 |
38 |
YANG Y, LI Q, LING Y, et al. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis[J]. Front Immunol, 2022,13:1094556. doi:10.3389/fimmu.2022.1094556
doi: 10.3389/fimmu.2022.1094556 |
39 |
CHEN J, XU C, YANG K, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment[J]. Nat Commun, 2023,14(1):1161. doi:10.1038/s41467-023-36747-y
doi: 10.1038/s41467-023-36747-y |
40 |
MEHTA R L, BURDMANN E A, CERDA J, et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study[J]. Lancet, 2016,387(10032):2017-2025. doi:10.1016/s0140-6736(16)30240-9
doi: 10.1016/s0140-6736(16)30240-9 |
41 |
HOLDITCH S J, BROWN C N, LOMBARDI A M, et al. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury[J]. Int J Mol Sci, 2019,20(12):3011. doi:10.3390/ijms20123011
doi: 10.3390/ijms20123011 |
42 |
LI C M, LI M, ZHAO W B, et al. Alteration of N6-Methyladenosine RNA Profiles in Cisplatin-Induced Acute Kidney Injury in Mice[J]. Front Mol Biosci, 2021,8:654465. doi:10.3389/fmolb.2021.654465
doi: 10.3389/fmolb.2021.654465 |
43 |
ZHOU P, WU M, YE C, et al. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m(6)A abrogation in RNA[J]. J Biol Chem, 2019,294(45):16908-16917. doi:10.1074/jbc.ra119.011009
doi: 10.1074/jbc.ra119.011009 |
44 |
LI S, ZHOU H, LIANG Y, et al. Integrated analysis of transcriptome-wide m(6)A methylation in a Cd-induced kidney injury rat model[J]. Ecotoxicol Environ Saf, 2023,256:114903. doi:10.1016/j.ecoenv.2023.114903
doi: 10.1016/j.ecoenv.2023.114903 |
45 |
WANG J, ISHFAQ M, XU L, et al. METTL3/m(6)A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway[J]. Front Pharmacol, 2019,10:517. doi:10.3389/fphar.2019.00517
doi: 10.3389/fphar.2019.00517 |
46 |
WAN S J, HUA Q, XING Y J, et al. Decreased Urine N6-methyladenosine level is closely associated with the presence of diabetic nephropathy in type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2022,13:986419. doi:10.3389/fendo.2022.986419
doi: 10.3389/fendo.2022.986419 |
[1] | 黄挺,谢榕城,王雨婷,林小明,马杰飞. 肾阻力指数联合血液和尿液生物标志物早期预测介入术后造影剂诱导的急性肾损伤的价值[J]. 实用医学杂志, 2024, 40(7): 1011-1016. |
[2] | 戴成才,程振兴,涂倩倩. 血清胱抑素C联合床旁肾脏超声对脓毒症急性肾损伤患者预后情况的评估价值[J]. 实用医学杂志, 2024, 40(22): 3226-3231. |
[3] | 黄坤源,江克华,王庆. S100A9在肾脏疾病中的研究进展[J]. 实用医学杂志, 2024, 40(22): 3251-3255. |
[4] | 黄瑜亮,汤颖,余文娟,陈俊哲. Cyclin D1通过促进糖酵解改善肾脏缺血再灌注诱导的急性肾损伤的机制[J]. 实用医学杂志, 2024, 40(21): 3013-3022. |
[5] | 陶颖俊,任腾竹,魏峰,刘新通. 阿加曲班联合线粒体移植对脑缺血再灌注损伤小鼠内皮功能及血流变学的影响[J]. 实用医学杂志, 2024, 40(19): 2665-2671. |
[6] | 蒋伟,王辉,黄中伟,黄新忠. 可溶性生长刺激表达基因2蛋白对脓毒症相关急性肾损伤的预测价值[J]. 实用医学杂志, 2024, 40(16): 2291-2297. |
[7] | 李竹,王嫣,周雯静,王海英. 线粒体呼吸链酶复合物在心肌缺血再灌注损伤中的作用进展[J]. 实用医学杂志, 2024, 40(15): 2172-2176. |
[8] | 赵国敏,张辉,叶朴聪,陈炜. 乳酸脱氢酶与白蛋白比值对脓毒症相关急性肾损伤患者短期预后的影响[J]. 实用医学杂志, 2024, 40(13): 1803-1807. |
[9] | 金玉峰,申存毅,张靖垚,薛玉龙,何栋. 局部枸橼酸抗凝在连续肾脏替代疗法串联人工肝治疗中的运用效果观察[J]. 实用医学杂志, 2024, 40(13): 1879-1884. |
[10] | 郑因碧,邵义明,黎焯基,黎诗婷,陈鸣娣,曾文驰,董宏裕. 右美托咪定对脓毒症急性肾损伤患者的肾功能影响的队列研究[J]. 实用医学杂志, 2024, 40(10): 1423-1428. |
[11] | 李晶, 陆芹芹 崔艳飞 . 血清PGC⁃1α水平在脓毒症致急性肾损伤诊断中的价值 [J]. 实用医学杂志, 2023, 39(4): 471-475. |
[12] | 邓翕仁, 曾道君, 张官鹏 段晓霞, . 黄芩苷通过PGE2在脑缺血再灌注损害小鼠认知功能中的作用研究 [J]. 实用医学杂志, 2023, 39(15): 1881-1887. |
[13] | 李晓玲 周文杰 邓伟 马希刚.
凝血指标联合血清胱抑素C对脓毒症急性 肾损伤患者预后的预测价值 [J]. 实用医学杂志, 2023, 39(1): 81-85. |
[14] | 吴彦立 周文杰 李晓玲 马希刚. 血清Nod 样蛋白受体3、白介素⁃18水平与脓毒症急性肾损伤患者病情严重程度的相关性 [J]. 实用医学杂志, 2022, 38(4): 484-489. |
[15] | 杨琳琳 刘刚 易锐 王娟 谢振华 刘成琼 陈洁. 急性肾损伤风险预测方法的研究进展[J]. 实用医学杂志, 2022, 38(18): 2367-2372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||